Appendix B

Compatibility

You go ahead and follow your customs,
and Il follow mine.
—C. Napier

C/C++ compatibility — silent differences between C and C++ — C code that is not C++
— deprecated features — C++ code that is not C — coping with older C++ implementa-
tions — headers — the standard library — namespaces — allocation errors — templates
— for-statement initializers — advice — exercises.

B.1 Introduction

This appendix discusses the incompatibilities between C and C++ and between Standard C++ (as
defined by 1SO/IEC 14882) and earlier versions of C++. The purpose is to document differences
that can cause problems for the programmer and point to ways of dealing with such problems.
Most compatibility problems surface when people try to upgrade a C program to a C++ program,
try to port a C++ program from one pre-standard version of C++ to another, or try to compile C++
using modern features with an older compiler. The aim here is not to drown you in the details of
every compatibility problem that ever surfaced in an implementation, but rather to list the most fre-
guently occurring problems and present their standard solutions.

When you look at compatibility issues, a key question to consider is the range of implementa-
tions under which a program needs to work. For learning C++, it makes sense to use the most com-
plete and helpful implementation. For delivering a product, a more conservative strategy might be
in order to maximize the number of systems on which the product can run. In the past, this has
been a reason (and sometimes just an excuse) to avoid C++ features deemed novel. However,
implementations are converging, so the need for portability across platforms is less cause for
extreme caution than it was a couple of years ago.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

816 Compatibility Appendix B

B.2 C/C++ Compatibility

With minor exceptions, C++ is a superset of C (meaning C89, defined by ISO/IEC 9899:1990).
Most differences stem from C++'s greater emphasis on type checking. Well-written C programs
tend to be C++ programs aswell. A compiler can diagnose every difference between C++ and C.

B.2.1 “‘Silent’’ Differences

With a few exceptions, programs that are both C++ and C have the same meaning in both lan-
guages. Fortunately, these ‘‘silent differences’’ are rather obscure:

In C, the size of a character constant and of an enumeration equals sizeof(int) . In Ct++,
sizeof(" a") equals sizeof(char) , and a C++ implementation is allowed to choose whatever sizeis
most appropriate for an enumeration (84.8).

C++ providesthe// comments; C does not (although many C implementations provide them as
an extension). This difference can be used to construct programs that behave differently in the two
languages. For example:

int f(int a, int b)
{
return a// * pretty unlikely */ b
; / * unrealistic: semicolon on separate line to avoid syntax error * /

}

C99 (meaning C as defined by 1SO/IEC 9899:1999(E)), also provides// .
A structure name declared in an inner scope can hide the name of an object, function, enumera-
tor, or type in an outer scope. For example:

int x[99];
void f()

struct x{ int a; };
sizeof(x); / * sizeof thearrayin C, size of the struct in C++ */

B.2.2 C Code That IsNot C++

The C/C++ incompatibilities that cause most real problems are not subtle. Most are easily caught
by compilers. This section gives examples of C code that is not C++. Most are deemed poor style
or even obsolete in modern C.

In C, most functions can be called without a previous declaration. For example:

main() /* poor style C. Not C++ */

double sg2 = sgrt(2); / * call undeclared function * /
printf(" the square root of 2 is%g@\n", sq2); /* call undeclared function */

}

Complete and consistent use of function declarations (function prototypes) is generaly recom-
mended for C. Where that sensible advice is followed, and especially where C compilers provide

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section B.2.2 C CodeThat IsNot C++ 817

options to enforce it, C code conforms to the C++ rule. Where undeclared functions are called, you
have to know the functions and the rules for C pretty well to know whether you have made a mis-
take or introduced a portability problem. For example, the previous main() contains at least two
errors as a C program.

In C, afunction declared without specifying any argument types can take any number of argu-
ments of any type at al. Such use is deemed obsolescent in Standard C, but it is not uncommon:

void f(); /* argument types not mentioned * /

void g()

f(2); / * poor style C. Not C++ */
}

In C, functions can be defined using a syntax that optionally specifies argument types after the list
of arguments:

void f(a, p,c) char*p; char ¢; { /* ..*/ } [* C.NotC++*/

Such definitions must be rewritten:
void f(int a, char* p, char ¢) { /* ..*/ }

In C and in pre-standard versions of C++, the type specifier defaultsto int. For example:
const a=7, /* In C, typeint assumed. Not C++ */

C99 disallows*‘implicitint,’” just asin C++.
C allows the definition of structsin return type and argument type declarations. For example:

struct S{ int x, y; } f(); /* C.Not C++ */
void g(struct S{ int x,y; }y); /* C.Not C++ */

The C++ rules for defining types make such declarations useless, and they are not allowed.
In C, integers can be assigned to variables of enumeration type:

enum Direction { up, down};
enum Direction d = 1; /* error: int assigned to Direction; okin C*/

C++ provides many more keywords than C does. |f one of these appears as an identifier in a C pro-
gram, that program must be modified to make it a C++ program:

O C++ Keywords That Are Not C Keywords a

d and eq asm bitand bitor bool 5
rcatch class compl const_cast delete dynamic_cast
rexplicit export false friend inline mutable O
Chamespace new not not_eq operator or O
Cor_eq private protected public reinterpret_cast static cast U
B[empl ate this throw true try typeid E
rfypename using virtual wchar _t xor Xor_eq 0

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

818 Compatibility Appendix B

In C, some of the C++ keywords are macros defined in standard headers:

0 C++ Keywords That Are C Macros O
E‘and and eq bitand bitor bool compl false 5
oot not eq or or_eq true wchar_t xor Xor_eq

Thisimpliesthat in C they can be tested using #ifdef, redefined, etc.

In C, a global data object may be declared several times in a single trandlation unit without
using the extern specifier. As long as at most one such declaration provides an initiaizer, the
object is considered defined only once. For example:

int i; int i; / * defines or declares a single integer ‘i’; not C++ */

In C++, an entity must be defined exactly once; §9.2.3.

In C++, aclass may not have the same name as a typedef declared to refer to a different typein
the same scope; 85.7.

In C, avoid* may be used as the right-hand operand of an assignment to or initialization of a
variable of any pointer type; in C++ it may not (85.6). For example:

void f(int n)

int* p=malloc(n*sizeof(int)); /* not C++.In Ct+, allocate using ‘new’ */

}

C dlowstransfer of control to alabeled-statement (8A.6) to bypass an initialization; C++ does not.
In C, aglobal const by default has external linkage; in C++ it does not and must be initialized,
unless explicitly declared extern (85.4).
In C, names of nested structures are placed in the same scope as the structure in which they are
nested. For example:

struct S{
struct T{/* ..*/ };
/..

s

struct T X; /* okin Cmeaning ‘S:Tx;". Not C++ */

In C, an array can beinitialized by an initializer that has more elements than the array requires. For
example:

char v[5] =" Oscar"; /* okin C, theterminating O is not used. Not C++ */

B.2.3 Deprecated Features

By deprecating a feature, the standards committee expresses the wish that the feature would go
away. However, the committee does not have a mandate to remove a heavily used feature — how-
ever redundant or dangerousit may be. Thus, adeprecation is a strong hint to the usersto avoid the
feature.

The keyword static, which usually means ‘‘ statically allocated,”’ can be used to indicate that a
function or an object islocal to atrandlation unit. For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section B.2.3 Deprecated Features 819

/1 filel:
static int glob;

/1 file2:
static int glob;

This program genuinely has two integers called glob. Each glob is used exclusively by functions
defined in its trandlation unit.

The use of static to indicate ‘‘local to tranglation unit’’ is deprecated in C++. Use unnamed
namespaces instead (88.2.5.1).

The implicit conversion of a string literal to a (non-const) char* is deprecated. Use named
arrays of char or avoid assignment of string literals to char* s(85.2.2).

C-style casts should have been deprecated when the new-style casts were introduced. Program-
mers should seriously consider banning C-style casts from their own programs. Where explicit
type conversion is necessary, static_cast, reinterpret_cast, const_cast, or a combination of these
can do what a C-style cast can. The new-style casts should be preferred because they are more
explicit and morevisible (86.2.7).

B.2.4 C++ CodeThat IsNot C

This section lists facilities offered by C++ but not by C. The features are sorted by purpose. How-
ever, many classifications are possible and most features serve multiple purposes, so this classifica-
tion should not be taken too seriously.
— Features primarily for notational convenience:
[1] // comments (8§2.3); added to C99
[2] Support for restricted character sets (8C.3.1); partially added to C99
[3] Support for extended character sets (§C.3.3); added to C99
[4] Non-constant initializers for objectsin static storage (89.4.1)
[5] constin constant expressions (85.4, 8C.5)
[6] Declarations as statements (86.3.1); added to C99
[7] Declarationsin for-statement initializers (86.3.3); added to C99
[8] Declarationsin conditions (86.3.2.1)
[9] Structure names need not be prefixed by struct (85.7)
— Features primarily for strengthening the type system:
[1] Function argument type checking (87.1); later added to C (§B.2.2)
[2] Type-safelinkage (89.2, §9.2.3)
[3] Free store management using new and delete (86.2.6, §10.4.5, §15.6)
[4] const (85.4, 85.4.1); later added to C
[5] The Boolean type bool (84.2); partially added to C99
[6] New cast syntax (86.2.7)
— Facilities for user-defined types:
[1] Classes (Chapter 10)
[2] Member functions (§10.2.1) and member classes (§11.12)
[3] Constructors and destructors (810.2.3, §10.4.1)
[4] Derived classes (Chapter 12, Chapter 15)

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

820 Compatibility Appendix B

[5] virtual functions and abstract classes (8§12.2.6, §12.3)

[6] Public/protected/private access control (810.2.2, 815.3, 8§C.11)

[7] friends(811.5)

[8] Pointersto members (815.5, §C.12)

[9] static members (810.2.4)

[10] mutable members (810.2.7.2)

[11] Operator overloading (Chapter 11)

[12] References (85.5)

— Features primarily for program organization (in addition to classes):

[1] Templates (Chapter 13, §C.13)

[2] Inlinefunctions (§7.1.1); added to C99

[3] Default arguments (87.5)

[4] Function overloading (§7.4)

[5] Namespaces(88.2)

[6] Explicit scope qualification (operator : : ; §4.9.4)

[7] Exception handling (88.3, Chapter 14)

[8] Run-time Type Identification (815.4)
The keywords added by C++ (8B.2.2) can be used to spot most C++-specific facilities. However,
some facilities, such as function overloading and consts in constant expressions, are not identified
by akeyword. In addition to the features listed, the C++ library (816.1.2) is mostly C++ specific.

The __cplusplus macro can be used to determine whether a program is being processed by a C

or aC++ compiler (89.2.4).

B.3 Coping with Older C++ Implementations

C++ has been in constant use since 1983 (81.4). Since then, several versions have been defined and
many separately developed implementations have emerged. The fundamental aim of the standards
effort was to ensure that implementers and users would have a single definition of C++ to work
from. Until that definition becomes pervasive in the C++ community, however, we have to dea
with the fact that not every implementation provides every feature described in this book.

It is unfortunately not uncommon for people to take their first serious look at C++ using afive-
year-old implementation. The typical reason is that such implementations are widely available and
free. Given a choice, no self-respecting professional would touch such an antique. For a novice,
older implementations come with serious hidden costs. The lack of language features and library
support means that the novice must struggle with problems that have been eliminated in newer
implementations. Using a feature-poor older implementation also warps the novice’ s programming
style and gives a biased view of what C++is. The best subset of C++ to initially learn is not the set
of low-level facilities (and not the common C and C++ subset; §1.2). In particular, | recommend
relying on the standard library and on templates to ease learning and to get a good initial impres-
sion of what C++ programming can be.

The first commercial release of C++ was in late 1985. The language was defined by the first
edition of this book. At that point, C++ did not offer multiple inheritance, templates, run-time type
information, exceptions, or namespaces. Today, | see no reason to use an implementation that

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section B.3 Coping with Older C++ Implementations 821

doesn’t provide at least some of these features. | added multiple inheritance, templates, and excep-
tions to the definition of C++ in 1989. However, early support for templates and exceptions was
uneven and often poor. If you find problems with templates or exceptions in an older implementa-
tion, consider an immediate upgrade.

In general, it is wise to use an implementation that conforms to the standard wherever possible
and to minimize the reliance on implementation-defined and undefined aspects of the language.
Design as if the full language were available and then use whatever workarounds are needed. This
leads to better organized and more maintainable programs than designing for the lowest-common-
denominator subset of C++. Also, be careful to use implementation-specific language extensions
only when absolutely necessary.

B.3.1 Headers

Traditionally, every header filehad a. h suffix. Thus, C++ implementations provided headers such
as<map. h> and <iostream. h>. For compatibility, most still do.

When the standards committee needed headers for redefined versions of standard libraries and
for newly added library facilities, naming those headers became a problem. Using the old . h
names would have caused compatibility problems. The solution was to drop the . h suffix in stan-
dard header names. The suffix is redundant anyway because the < > notation indicates that a stan-
dard header is being named.

Thus, the standard library provides non-suffixed headers, such as <iostream> and <map>. The
declarations in those files are placed in namespace std. Older headers place their declarationsin the
global namespace and use a. h suffix. Consider:

#include<iostream>
int main()

{

}

If thisfailsto compile on an implementation, try the more traditional version:

std: : cout << " Hello, world! \n";

#include<iostream. h>

int main()

{
}

Some of the most serious portability problems occur because of incompatible headers. The stan-
dard headers are only a minor contributor to this. Often, a program depends on a large number of
headers that are not present on all systems, on a large number of declarations that don’t appear in
the same headers on all systems, and on declarations that appear to be standard (because they are
found in headers with standard names) but are not part of any standard.

There are no fully-satisfactory approaches to dealing with portability in the face of inconsistent
headers. A genera idea is to avoid direct dependencies on inconsistent headers and localize the
remaining dependencies. That is, we try to achieve portability through indirection and localization.

cout << " Hello, world! \n";

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

822 Compatibility Appendix B

For example, if declarations that we need are provided in different headers in different systems, we
may choose to #include an application specific header that in turn #includes the appropriate
header(s) for each system. Similarly, if some functionality is provided in dlightly different forms
on different systems, we may choose to access that functionality through application-specific inter-
face classes and functions.

B.3.2 The Standard Library

Naturally, pre-standard-C++ implementations may lack parts of the standard library. Most will
have iostreams, non-templated complex, a different string class, and the C standard library. How-
ever, some may lack map, list, valarray, etc. In such cases, use the — typicaly proprietary —
libraries available in a way that will allow conversion when your implementation gets upgraded to
the standard. It isusually better to use a non-standard string, list, and map than to revert to C-style
programming in the absence of these standard library classes. Also, good implementations of the
STL part of the standard library (Chapter 16, Chapter 17, Chapter 18, Chapter 19) are available free
for downloading.

Early implementations of the standard library were incomplete. For example, some had con-
tainers that didn’'t support allocators and others required allocators to be explicitly specified for
each class. Similar problems occurred for other *‘policy arguments,”’ such as comparison criteria.
For example:

list<int> li; /1 ok, but some implementations require an allocator
list<int, allocator<int> > 1i2; /1 ok, but some implementations don’t implement allocators
map<string, Record> m1, /1 ok, but some implementations require a less-operation

map<string, Record, less<string> > m2;

Use whichever version an implementation accepts. Eventually, the implementations will accept all.
Early Ct+ implementations provided istrstream and ostrstream defined in <strstream. h>
instead of istringstream and ostringstream defined in <sstream>. The strstreams operated
directly onachar[] (see §21.10[26]).
The streams in pre-standard-C++ implementations were not parameterized. In particular, the
templates with the basic _ prefix are new in the standard, and the basic_ios class used to be called
ios. Curiously enough, iostate used to be called io_state.

B.3.3 Namespaces

If your implementation does not support namespaces, use source files to express the logical struc-
ture of the program (Chapter 9). Similarly, use header files to express interfaces that you provide
for implementations or that are shared with C.

In the absence of namespaces, use static to compensate for the lack of unnamed namespaces.
Also use an identifying prefix to globa names to distinguish your names from those of other parts
of the code. For example:

/1 for use on pre-namespace implementations:

class bs string{ /* ...*/ }; /] Bjarne'sstring
typedef int bs_bool; /1 Bjarne's Boolean type

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section B.3.3 Namespaces 823

class joe_string; /1 Jo€'sstring
enum joe_bool { joe false, joe true}; /1 Jo€' s bool

Be careful when choosing a prefix. Existing C and C++ libraries are littered with such prefixes.

B.3.4 Allocation Errors

In pre-exception-handling-C++, operator new returned 0 to indicate allocation failure. Standard
C++'snew throws bad_alloc by default.

In general, it is best to convert to the standard. In this case, this means modify the code to catch
bad alloc rather than test for 0. In either case, coping with memory exhaustion beyond giving an
error message is hard on many systems.

However, when converting from testing 0 to catching bad alloc is impractical, you can some-
times modify the program to revert to the pre-exception-handling behavior. If no_new_handler is
installed, using the nothrow allocator will cause a0 to be returned in case of allocation failure:

X* pl=new X; /1 throwsbad alloc if no memory
X* p2 = new(nothrow) X; // returnsO if no memory

B.3.5 Templates

The standard introduced new template features and clarified the rules for several existing ones.
If your implementation doesn’t support partial specialization, use a separate name for the tem-
plate that would otherwise have been a speciadization. For example:

template<class T> class plist: private list<void*> { // should have been list<T*>
Il ..

s
If your implementation doesn’t support member templates, some techniques become infeasible. In
particular, member templates allow the programmer to specify construction and conversion with a
flexibility that cannot be matched without them (813.6.2). Sometimes, providing a honmember
function that constructs an object is an alternative. Consider:

template<class T> class X {
Il ..
template<class A> X(const A& a);
s
In the absence of member templates, we must restrict ourselves to specific types:

template<class T> class X{
/..
X(const Al& a);
X(const A2& a);
/..

}s

Most early implementations generated definitions for all member functions defined within a tem-
plate class when that template class was instantiated. This could lead to errors in unused member

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

824 Compatibility Appendix B

functions (8C.13.9.1). The solution is to place the definition of the member functions after the
class declaration. For example, rather than

template<class T> class Container {

/...
public:

void sort() { /* use<*/ } /1 in-class definition
b

class Glob{ /* no<for Glob*/ };

Container<Glob> cg; // some pre-standard implementations try to define Container<Glob>::sort()
use

template<class T> class Container {
1l ..

public:
void sort();

i

template<class T> void Container<T>::sort() { /* use<*/ } // out-of-class definition
class Glob{ /* no<for Glob*/ };

Container<Glob> cg; // no problemaslong as cg.sort() isn't called

Early implementations of C++ did not handle the use of members defined later in a class. For
example:

template<class T> class Vector {

public:
T& operator[] (size_t i) { return v[i]; } // vdeclared below
/..

private:
T v, /1 oops: not found!
size t sz

s

In such cases, either sort the member declarations to avoid the problem or place the definition of
the member function after the class declaration.

Some pre-standard-C++ implementations do not accept default arguments for templates
(813.4.1). Inthat case, every template parameter must be given an explicit argument. For example:

template<class Key, class T, class LT = less<T> > class map {
/..
s

map<string, int> m; /1 Oops: default template arguments not implemented
map< string, int, less<string> > m2; // workaround: be explicit

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section B.3.6 For-Statement Initializers 825

B.3.6 For-Statement Initializers

Consider:
void f(vector<char>&v, int m)

for (int i=0; i<v. size() &&i<=m; ++i) cout << V[i];

if(i==m) { // error:ireferred to after end of for-statement
Il ..
}

}

Such code used to work because in the original definition of C++, the scope of the controlled vari-
able extended to the end of the scope in which the for-statement appears. If you find such code,
simply declare the controlled variable before the for-statement:

void f2(vector<char>&v, int m)

{
int i=0; // ineeded after the loop
for (; i<v. size() &&i<=m; ++i) cout << V[i];
if(i==m) {

/..

}

}

B.4 Advice

[1] For learning C++, use the most up-to-date and complete implementation of Standard C++ that
you can get accessto; 8B.3.

[2] The common subset of C and C++ isnot the best initial subset of C++ to learn; §1.6, §B.3.

[3] For production code, remember that not every C++ implementation is completely up-to-date.
Before using a major new feature in production code, try it out by writing small programs to
test the standards conformance and performance of the implementations you plan to use; for
example, see §8.5[6-7], §16.5[10], §B.5[7].

[4] Avoid deprecated features such as global statics; also avoid C-style casts; §6.2.7, §B.2.3.

[5] “‘implicit int’”’ has been banned, so explicitly specify the type of every function, variable,
const, etc.; 8B.2.2.

[6] When converting a C program to C++, first make sure that function declarations (prototypes)
and standard headers are used consistently; §B.2.2.

[7] When converting a C program to C++, rename variables that are C++ keywords; §B.2.2.

[8] When converting a C program to C++, cast the result of malloc() to the proper type or change
all usesof malloc() to usesof new; §B.2.2.

[9] When converting from malloc() and free() to new and delete, consider using vector,
push_back(), andreserve() instead of realloc() ; §3.8, §16.3.5.

[10] When converting a C program to C++, remember that there are no implicit conversions from
ints to enumerations; use explicit type conversion where necessary; 8§4.8.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

826 Compatibility Appendix B

[11] A facility defined in namespace std is defined in a header without a suffix (e.g. std:: cout is
declared in <iostream>). Older implementations have standard library facilities in the global
namespace and declared in headers with a. h suffix (e.g. :: cout declared in <iostream. h>) ;
§9.2.2, 8B.3.1.

[12] If older code tests the result of new against 0, it must be modified to catch bad alloc or to use
new(nothrow) ; 8B.3.4.

[13] If your implementation doesn’t support default template arguments, provide arguments explic-
itly; typedefs can often be used to avoid repetition of template arguments (similar to the way
the typedef string saves you from saying basic_string< char, char_traits<char>,
allocator<char> >); 8B.3.5.

[14] Use <string> to get std:: string (<string. h> holds the C-style string functions); §9.2.2,
§B.3.1.

[15] For each standard C header <X. h> that places names in the global namespace, the header
<cX> places the namesin namespace std; §B.3.1.

[16] Many systems have a" String. h" header defining a string type. Note that such strings differ
from the standard library string.

[17] Prefer standard facilities to non-standard ones; §20.1, §B.3, 8C.2.

[18] Useextern" C" when declaring C functions; §9.2.4.

B.5 Exercises

1. (R.5) Take a C program and convert it to a C++ program; list the kinds of non-C++ constructs
used and determine if they are valid ANSI C constructs. First convert the program to strict
ANSI C (adding prototypes, etc.), then to C++. Estimate the time it would take to convert a
100,000 line C program to C++.

2. ([R.5) Write a program to help convert C programs to C++ by renaming variables that are C++
keywords, replacing calls of malloc() by uses of new, etc. Hint: don’t try to do a perfect job.

3. ((R) Replaceall usesof malloc() inaC-style C++ program (maybe arecently converted C pro-
gram) to uses of new. Hint: §B.4[8-9].

4. ([R.5) Minimize the use of macros, global variables, uninitialized variables, and casts in a C-
style C++ program (maybe arecently converted C program).

5. (B) Take a C++ program that is the result of a crude conversion from C and critique it asa C++
program considering locality of information, abstraction, readability, extensibility, and potential
for reuse of parts. Make one significant change to the program based on that critique.

6. ([R) Take asmall (say, 500 line) C++ program and convert it to C. Compare the origina with
the result for size and probable maintainability.

7. ([B) Write a small set of test programs to determine whether a C++ implementation has ‘‘the
latest’” standard features. For example, what is the scope of a variable defined in a for-
statement initializer? (§8B.3.6), are default template arguments supported? (§B.3.5), are member
templates supported? (813.6.2), and is argument-based lookup supported? (88.2.6). Hint:
8B.2.4.

8. ([R.5) Take a C++ program that use <X. h> headers and convert it to using <X> and <cX>
headers. Minimize the use of using-directives.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

