Appendix D

L ocales

When in Rome,
do as the Romans do.
—proverb

Handling cultural differences — class locale — named locales — constructing locales
— copying and comparing locales — the global() and classic() locales— comparing
strings — class facet — accessing facets in a locale — a simple user-defined facet —
standard facets — string comparison — numeric 1/0O — money |/O — date and time |/O
— low-level time operations — a Date class — character classification — character
code conversion — message catal ogs — advice — exercises.

D.1 Handling Cultural Differences

A localeis an object that represents a set of cultural preferences, such as how strings are compared,
the way numbers appear as human-readable output, and the way characters are represented in exter-
nal storage. The notion of a locale is extensible so that a programmer can add new facets to a
locale representing locale-specific entities not directly supported by the standard library, such as
postal codes (zip codes) and phone numbers. The primary use of locales in the standard library is
to control the appearance of information put to an ostream and the format accepted by an istream.

Section §21.7 describes how to change locale for a stream; this appendix describes how a
locale is constructed out of facets and explains the mechanisms through which a locale affects its
stream. This appendix also describes how facets are defined, lists the standard facets that define
specific properties of a stream, and presents techniques for implementing and using locales and
facets. The standard library facilities for representing data and time are discussed as part of the
presentation of date 1/0.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

870 Locales Appendix D

The discussion of locales and facetsis organized like this:
8D.1 introduces the basic ideas for representing cultural differences using locales.
8D.2 presentsthe locale class.
8D.3 presents the facet class.
8D.4 givesan overview of the standard facets and presents details of each:
8D.4.1 String comparison
8D.4.2 Input and output of numeric values
8D.4.3 Input and output of monetary values
8D.4.4 Input and output of dates and time
8D.4.5 Character classification
8D.4.6 Character code conversions
8D.4.7 Message catalogs
The notion of alocale is not primarily a C++ notion. Most operating systems and application envi-
ronments have a notion of locale. Such anotion is—in principle — shared among all programs on a
system, independently of which programming language they are written in. Thus, the C++ standard
library notion of a locale can be seen as a standard and portable way for C++ programs to access
information that has very different representations on different systems. Among other things, a
C++ locale is a common interface to system information that is represented in incompatible ways
on different systems.

D.1.1 Programming Cultural Differences

Consider writing a program that needs to be used in several countries. Writing a program in a style
that allows that is often called *‘internationalization’” (emphasizing the use of a program in many
countries) or ‘‘localization’’ (emphasizing the adaptation of a program to local conditions). Many
of the entities that a program manipulates will conventionally be displayed differently in those
countries. We can handle this by writing our 1/O routines to take this into account. For example:

void print_date(const Date& d) // print in the appropriate format

switch(where_am 1) { /1 user-defined style indicator

case DK: /1 eg., 7. marts 1999
cout << d. day() <<". " << dk_month[d. month()] <<" " << d. year();
break;

case UK: /l eg., 7/3/1999
cout<<d. day() <<" / " <<d. month() <<" / " << d. year();
break;

case US /1l eg., 3/7/1999
cout << d. month() <<"/" << d. day() <<"/" <<d. year();
break;

Il ...

}

}

This style of code doesthejob. However, it’ srather ugly, and we have to use this style consistently
to ensure that all output is properly adjusted to local conventions. Worse, if we want to add a new
way of writing a date, we must modify the code. We could imagine handling this problem by

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.1.1 Programming Cultural Differences 871

creating a class hierarchy (812.2.4). However, the information in a Date is independent of the way
we want to look at it. Consequently, we don't want a hierarchy of Date types. for example,
US date, UK _date, and JP_date. Instead, we want a variety of ways of displaying Dates: for
example, US-style output, UK -style output, and Japanese-style output; see §8D.4.4.5.

Other problems arise with the *‘let the user write 1/O functions that take care of cultural differ-

ences’ approach:

[1] An application programmer cannot easily, portably, and efficiently change the appearance of
built-in types without the help of the standard library.

[2] Finding every 1/O operation (and every operation that prepares data for 1/0 in a locae-
sensitive manner) in alarge program is not always feasible.

[3] Sometimes, we cannot rewrite a program to take care of a new convention — and even if we
could, we'd prefer asolution that didn’t involve arewrite.

[4] Having each user design and implement a solution to the problems of different cultural con-
vention is wasteful.

[5] Different programmers will handle low-level cultural preferences in different ways, so pro-
grams dealing with the same information will differ for non-fundamental reasons. Thus,
programmers maintaining code from a number of sources will have to learn a variety of pro-
gramming conventions. Thisistedious and error prone.

Consequently, the standard library provides an extensible way of handling cultural conventions.
The iostreams library (821.7) relies on this framework to handle both built-in and user-defined
types. For example, consider a smple loop copying (Date, double) pairs that might represent a
series of measurements or a set of transactions:

void cpy(istream&is, ostream& os) // copy (Date,double) stream

Date d;
double volume;

while (is>>d>> volume) os<<d<<’ “~<<volume<<’\n;

}

Naturally, area program would do something with the records, and ideally aso be a bit more care-
ful about error handling.

How would we make this program read a file that conformed to French conventions (where
commais the character used to represent the decimal point in a floating-point number; for example,
12, 5 means twelve and a half) and write it according to American conventions? We can define
locales and 1/0 operations so that cpy() can be used to convert between conventions:

void f(istream& fin, ostream& fout, istream& fin2, ostream& fout2)

{

fin. imbue(locale(" en_US')); /1 American English

fout. imbue(locale(" fr")); /1 French

cpy(fin, fout); /1 read American English, write French

fin2. imbue(locale(" fr")); /1 French

fout2. imbue(locale(" en_US')); /1 American English

cpy(fin2, fout2); /1 read French, write American English
}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

872 Locales Appendix D

Given streams,

Apr 12, 1999 1000. 3
Apr 13, 1999 345,45
Apr 14, 1999 9688. 321

3 juillet 1950 10, 3
3 juillet 1951 134, 45
3 juillet 1952 67, 9

this program would produce:

12 avril 1999 1000, 3
13 avril 1999 345, 45
14 avril 1999 9688, 321

July 3, 1950 10. 3
July 3, 1951 134. 45
July 3, 1952 67.9

Much of the rest of this appendix is devoted to describing the mechanisms that make this possible
and explaining how to use them. Please note that most programmers will have little reason to deal
with the details of locales. Many programmers will never explicitly manipulate alocale, and most
who do will just retrieve a standard locale and imbue a stream with it (§21.7). However, the mech-
anisms provided to compose those locales and to make them trivial to use constitute a little pro-
gramming language of their own.

If aprogram or a system is successful, it will be used by people with needs and preferences that
the original designers and programmers didn’t anticipate. Most successful programs will be run in
countries where (natural) languages and character sets differ from those familiar to the original
designers and programmers. Wide use of a program isasign of success, so designing and program-
ming for portability across linguistic and cultural bordersisto prepare for success.

The concept of localization (internationalization) is simple. However, practical constraints
make the design and implementation of locale quite intricate:

[1] A locale encapsulates cultural conventions, such as the appearance of a date. Such conven-
tions vary in many subtle and unsystematic ways. These conventions have nothing to do
with programming languages, so a programming language cannot standardize them.

[2] The concept of a locale must be extensible, because it is not possible to enumerate every
cultural convention that isimportant to every C++ user.

[3] A locale isused in 1/O operations from which people demand run-time efficiency.

[4] A locale must be invisible to the majority of programmers who want to benefit from stream
[/O ‘*doing the right thing’’ without having to know exactly what that is or how it is
achieved.

[5] A locale must be available to designers of facilities that deal with cultural-sensitive infor-
mation beyond the scope of the stream I/O library.

Designing a program doing 1/0 requires a choice between controlling formatting through ‘* ordinary

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.1.1 Programming Cultural Differences 873

code’’ and the use of locales. The former (traditional) approach is feasible where we can ensure
that every input operation can be easily converted from one convention to another. However, if the
appearance of built-in types needs to vary, if different character sets are needed, or if we need to
choose among an extensible set of 1/0 conventions, the locale mechanism begins to look attractive.

A locale is composed of facets that control individual aspects, such as the character used for
punctuation in the output of a floating-point value (decimal_point() ; 8D.4.2) and the format used
to read a monetary value (moneypunct; 8D.4.3). A facet is an object of a class derived from class
locale: : facet (8D.3). We can think of alocale as acontainer of facets (8D.2, 8D.3.1).

D.2 ThelocaleClass

The locale class and its associated facilities are presented in <locale>:

class std:: locale {

public:

class facet; /1 type used to represent aspects of a locale; §D.3

class id; /1 type used to identify a locale; §D.3

typedef int category; /1 type used to group/categorize facets

static const category /1 the actual values are implementation defined
none= 0,
collate=1,
ctype = 1<<1,

monetary = 1<<2,

numeric = 1<<3,

time = 1<<4,

messages = 1<<5,

all = collate| ctype| monetary| numeric| time| messages;

locale() throw(); /1 copy of global locale (8D.2.1)

locale(const locale& x) throw(); /1 copy of x

explicit locale(const char* p); /1 copy of locale named p (8D.2.1)

“locale() throw();

locale(const locale& x, const char* p, category c); /1 copy of x plus facetsfromp’'sc
locale(const locale& x, const locale&y, category c); /1 copy of x plus facetsfromy'sc

template <class Facet> locale(const locale& x, Facet* f); // copy of x plusfacet f
template <class Facet> locale combine(const locale& x); // copy of *this plus Facet from x

const locale& operator=(const locale& x) throw();

bool operator==(const locale&) const; /1 compare locales
bool operator! =(const locale&) const;

string name() const; /1 name of thislocale (§D.2.1)

template <class Ch, class Tr, class A> // compare strings using thislocale
bool operator() (const basic_string<Ch, Tr, A>&, const basic_string<Ch, Tr, A>&) const;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

874 Locales Appendix D

static locale global(const locale&); /1 set global locale and return old global locale
static const locale& classic(); /1 get‘‘classic’’ C-stylelocale
private:

/1 representation

}s

A locale can be thought of as an interface to a map<id, facet* >; that is, something that allows us
to use a locale: : id to find a corresponding object of a class derived from locale: : facet. A red
implementation of localeis an efficient variant of thisidea. The layout will be something like this:

collate<char>:

locale; L compare()

i Y hash()

\ﬂ%nckcharx

decimal_point()
truename()

Here, collate<char> and numpunct<char> are standard library facets (§D.4). As all facets, they
are derived from locale: : facet.

A locale is meant to be copied freely and cheaply. Consequently, a locale is almost certainly
implemented as a handle to the specialized map<id, facet* > that constitutes the main part of its
implementation. The facets must be quickly accessible in alocale. Consequently, the specialized
map<id, facet* > will be optimized to provide array-like fast access. The facets of a locale are
accessed by using the use_facet<Facet>(loc) notation; see 8§D.3.1.

The standard library provides arich set of facets. To help the programmer manipulate facetsin
logical groups, the standard facets are grouped into categories, such as numeric and collate (8D.4).

A programmer can replace facets from existing categories (8D.4, 8D.4.2.1). However, it is not
possible to add new categories; there is no way for a programmer to define a new category. The
notion of ‘‘category’’ applies to standard library facets only, and it is not extensible. Thus, a facet
need not belong to any category, and many user-defined facets do not.

By far the dominant use of locales is implicitly, in stream |/O. Each istream and ostream has
its own locale. The locale of a stream is by default the global locale (8D.2.1) at the time of the
stream’s creation. The locale of a stream can be set by theimbue() operation and we can extract a
copy of astream’slocale using getloc() (§21.6.3).

D.2.1 Named Locales

A locale is constructed from another locale and from facets. The simplest way of making alocale
isto copy an existing one. For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.2.1 Named Locales 875

locale locO; /1 copy of the current global locale (§D.2.3)

locale locl = locale(); /1 copy of the current global locale (§D.2.3)

locale loc2(""); /1 copy of ‘‘the user’'s preferred locale”’

locale loc3("C"); /1 copy of the"C" locale

locale loc4 = locale: : classic(); /1 copy of the"C" locale

locale locs(" POSIX"); /1 copy of the implementation-defined "POS X" locale

The meaning of locale(" C") is defined by the standard to be the ‘‘classic’’ C locale; this is the
locale that has been used throughout this book. Other locale names are implementation defined.

The locale(" ") is deemed to be ‘‘the user’s preferred locale.”” This locale is set by extralin-
guistic meansin a program’ s execution environment.

Most operating systems have ways of setting alocale for a program. Often, a locale suitable to
the person using a system is chosen when that person first encounters a system. For example, |
would expect a person who configures a system to use Argentine Spanish as its default setting will
find locale(" ") to mean locale(" es AR"). A quick check on one of my systems revealed 51
locales with mnemonic names, such as POS X, de, en_UK, en_US, es, es AR, fr, sv, da, pl, and
iso_8859 1. POSIX recommends a format of a lowercase language name, optionally followed by
an uppercase country name, optionally followed by an encoding specifier; for example, jp_JP. jit.
However, these names are not standardized across platforms. On another system, among many
other locale names, | found g, uk, us, s, fr, sw, and da. The C++ standard does not define the mean-
ing of alocale for a given country or language, though there may be platform-specific standards.
Consequently, to use named locales on a given system, a programmer must refer to system docu-
mentation and experiment.

It is generally a good idea to avoid embedding locale name strings in the program text. Men-
tioning afile name or a system constant in the program text limits the portability of a program and
often forces a programmer who wants to adapt a program to a new environment to find and change
such values. Mentioning a locale name string has similar unpleasant consequences. Instead,
locales can be picked up from the program’'s execution environment (for example, using
locale(" ")), or the program can request an expert user to specify aternative locales by entering a
string. For example:

void user_set_locale(const string& question_string)

{
cout << question_string; // eg., "If you want to use a different locale, please enter its name"
string s;
cin>>s;
locale: : global(locale(s. ¢ _str())); // setglobal locale as specified by user
}

It is usually better to let a non-expert user pick from alist of aternatives. A routine for doing this
would need to know where and how a system kept its locales.

If the string argument doesn't refer to a defined locale, the constructor throws the
runtime_error exception (814.10). For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

876 Locales Appendix D

void set_loc(locale& loc, const char* name)
try

loc = locale(name) ;

}

catch (runtime_error) {
cerr << "locale \"" << npame<<"\" isn" t defined\n";
/..

}

If alocale has a name string, name() will return it. If not, name() will return string("*"). A
name string is primarily a way to refer to alocale stored in the execution environment. Secondar-
ily, aname string can be used as a debugging aid. For example:

void print_locale_names(const locale& my_loc)

{
cout << " name of current global locale: " << locale(). name() << "\n";
cout << "name of classic C locale. " << locale:: classic() . name() <<"\n";
cout << "name of ‘ ‘ user’ s preferred locale” " : " <<locale(""). name() <<"\n";
cout << " name of my locale: " << my_loc. name() <<"\n";
}

Locales with identical name strings different from the default string(" *") compare equal. How-
ever, == or | = provide more direct ways of comparing locales.

The copy of a locale with a name string gets the same name as that locale (if it has one), so
many locales can have the same name string. That's logical because locales are immutable, so all
of these objects define the same set of cultural conventions.

A cal locale(loc, " Foo", cat) makes a locale that is like loc except that it takes the facets
from the category cat of locale(" Foo") . The resulting locale has a name string if and only if loc
has one. The standard doesn’t specify exactly which name string the new locale gets, but it is sup-
posed to be different from loc’s. One obvious implementation would be to compose the new string
out of loc’s name string and " Foo" . For example, if loc’'s name string is en_UK, the new locale
may have" en_UK: Fo0" asits name string.

The name strings for a newly created locale can be summarized like this:

O Locale Name String O
gocal e("Foo") "Foo" g

ocale(loc) loc.name() 0
docale(loc,"Foo",cat) New name string if loc has a name string; otherwise, string(" *") O
Oocale(loc,loc2,cat) New name string if loc and loc2 have strings; otherwise, string("*") O
Uocale(loc,Facet) string(" *") O
Hoc.combi ne(loc2) string("*") H

There are no facilities for a programmer to specify a C-style string as a name for a newly created
locale in a program. Name strings are either defined in the program’s execution environment or
created as combinations of such names by locale constructors.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.2.1.1 Constructing New Locales 877

D.2.1.1 Constructing New L ocales

A new locale is made by taking an existing locale and adding or replacing facets. Typically, anew
locale isaminor variation on an existing one. For example:

void f(const locale& loc, const My _money_io* mio) // My _money io defined in §D.4.3.1

locale locl(locale(" POSIX"), loc, locale: : monetary); /1 use monetary facets fromloc
locale loc2 = locale(locale: : classic(), mio); /1 classic plus mio
/..

}

Here, locl is a copy of the POSIX locale modified to use loc’'s monetary facets (8D.4.3). Simi-

larly, loc2 is a copy of the C locale modified to use aMy_money_io (8D.4.3.1). If a Facet* argu-

ment (here, My_money _io) is 0, the resulting locale is simply a copy of the locale argument.
When using

locale(const locale& x, Facet* f);
the f argument must identify a specific facet type. A plain facet* isnot sufficient. For example:

void g(const locale: : facet* miol, const My _money io* mio2)

{
locale loc3 = locale(locale: : classic(), miol); // error: type of facet not known
locale loc4 = locale(locale: : classic(), mio2); // ok: type of facet known
/...

}

The reason is that the locale uses the type of the Facet* argument to determine the type of the
facet at compile time. Specifically, the implementation of locale uses a facet’s identifying type,
facet: : id (8D.3), to find that facet in the locale (8D.3.1).

Note that the

template <class Facet> locale(const locale& x, Facet* f);

constructor is the only mechanism offered within the language for the programmer to supply a facet
to be used through a locale. Other locales are supplied by implementers as named locales
(8D.2.1). These named locales can be retrieved from the program’s execution environment. A pro-
grammer who understands the implementation-specific mechanism used for that might be able to
add new locales that way (8D.6[11,12]).

The set of constructors for locale is designed so that the type of every facet is known either
from type deduction (of the Facet template parameter) or because it came from another locale (that
knew itstype). Specifying a category argument specifies the type of facets indirectly, because the
locale knows the type of the facets in the categories. This implies that the locale class can (and
does) keep track of the types of facet types so that it can manipulate them with minimal overhead.

Thelocale: : id member typeis used by locale to identify facet types (8D.3).

It is sometimes useful to construct a locale that is a copy of another except for a facet copied
from yet another locale. The combine() template member function doesthat. For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

878 Locales Appendix D

void f(const locale& loc, const locale& loc2)

locale loc3 = loc. combine< My_money_io >(loc2);
/..

}

The resulting loc3 behaves like loc except that it uses a copy of My_money_io (8D.4.3.1) from
loc2 to format monetary 1/0. If loc2 doesn’t have a My_money_io to give to the new locale, com-
bine() will throw aruntime_error (814.10). The result of combine() has no name string.

D.2.2 Copying and Comparing L ocales

A locale can be copied by initialization and by assignment. For example:
void swap(locale& x, locale& y) /1 just like std::swap()
locale temp = Xx;
X=Yy,

y = temp;
}

The copy of alocale compares equal to the original, but the copy is an independent and separate
object. For example:

void f(locale* my locale)

{
locale loc = locale: : classic(); // "C"locale
if (loc! =locale:: classic()) {
cerr << " implementation error: send bug report to vendor\n";
exit(1);
}
if (&oc! = &locale:: classic()) cout << "no surprise: addresses differ\n";
locale loc2 = locale(loc, my_locale, locale: : numeric);
if (loc==1loc2) {
cout << " my numeric facets are the same as classic() " s numeric facets\n";
Il ..
}
/..
}

If my_locale has a numeric punctuation facet, my_numpunct<char>, that is different from
classic() 's standard numpunct<char>, the resulting locales can be represented like this:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.2.2 Copying and Comparing Locales 879

collate<char>:

compare() loc2:
hash() R -

loc:

mpunct<char>:

decimal_point()
curr_symbol()

i

numpunct<char>:

decimal_point()
curr_symbol()

Thereis no way of modifying alocale. Instead, the locale operations provide ways of making new
locales from existing ones. The fact that alocale isimmutable after it has been created is essential
for run-time efficiency. This allows someone using alocale to call virtual functions of a facet and
to cache the values returned. For example, an istream can know what character is used to represent
the decimal point and how true is represented, without calling decimal_point() each time it reads
a number and truename() each time it reads to a bool (8D.4.2). Only acall of imbue() for the
stream (§21.6.3) can cause such callsto return a different value.

D.2.3 Theglobal() and the classic() L ocales

The notion of a current locale for a program is provided by locale() , which yields a copy of the
current locale, and locale: : global(x) , which sets the current locale to x. The current locale is
commonly referred to asthe ‘*global locale,”” reflecting its probable implementation as a global (or
static) object.

The global locale is implicitly used when a stream is initialized. That is, every new stream is
imbued (821.1, §21.6.3) with a copy of locale() . Initially, the global locale is the standard C
locale, locale: : classic() .

The locale: : global() static member function allows a programmer to specify a locale to be
used as the global locale. A copy of the previous global locale is returned by global() . This
allows a user to restore the global locale. For example:

void f(const locale& my_loc)

{
ifstream finl(some_name); /1 finlisimbued with the global locale
locale& old_global = locale: : global(my loc); // set new global locale
ifstream fin2(some_other_name); /1 fin2isimbued with my_loc
/..
locale: : global(old_global); /1 restoreold global locale
}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

880 Locales Appendix D

If alocale x has a name string, locale: : global(x) also setsthe C global locale. Thisimplies that
if a C++ program calls a locale-sensitive function from the C standard library, the treatment of
locale will be consistent throughout a mixed C and C++ program.

If alocale x does not have a name string, it is undefined whether locale: : global(x) affectsthe
C global locale. Thisimpliesthat a C++ program cannot reliably and portably set the C locale to a
locale that wasn't retrieved from the execution environment. There is no standard way for a C pro-
gram to set the C++ global locale (except by calling a C++ function to do so0). In a mixed C and
C++ program, having the C global locale differ from global () iserror prone.

Setting the global locale does not affect existing /0O streams; those till use the locales that they
were imbued with before the global locale was reset. For example, finl is unaffected by the manip-
ulation of the global locale that caused fin2 to be imbued with my_loc.

Changing the global locale suffers the same problems as all other techniques relying on chang-
ing global data: It is essentially impossible to know what is affected by a change. It is therefore
best to reduce use of global() to a minimum and to localize those changes in a few sections of
code that obey a simple strategy for the changes. The ability to imbue (821.6.3) individual streams
with specific locales makes that easier. However, too many explicit uses of locales and facets
scattered throughout a program will also become a maintenance problem.

D.2.4 Comparing Strings

Comparing two strings according to alocale is possibly the most common explicit use of alocale.
Consequently, this operation is provided directly by locale so that users don’'t have to build their
own comparison function from the collate facet (§D.4.1). To be directly useful as a predicate
(818.4.2), this comparison function is defined as locale’ s operator () () . For example:

void f(vector<string>& v, const locale& my_locale)

{
sort(v. begin(), v. end()); /1 sort using < to compare elements
/..
sort(v. begin(), v. end(), my_locale); /1 sort according to the rules of my_locale
Il ..
}

By default, the standard library sort() uses < for the numerical value of the implementation char-
acter set to determine collation order (818.7, 818.6.3.1).
Note that locales compare basic_strings rather than C-style strings.

D.3 Facets
A facet is an object of aclass derived from locale' s member class facet:

class std:: locale: : facet {

protected:
explicit facet(size t r =0); /1 "r==0": the locale controls the lifetime of this facet
virtual ~ facet(); /1 note: protected destructor

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.3 Facets 881

private:
facet(const facet&); /1 not defined
void operator=(const facet&); // not defined

/1 representation

}s

The copy operations are private and are left undefined to prevent copying (811.2.2).

The facet class is designed to be a base class and has no public functions. Its constructor is
protected to prevent the creation of ‘‘plain facet’’ objects, and its destructor is virtual to ensure
proper destruction of derived-class objects.

A facet isintended to be managed through pointers by locales. A 0 argument to the facet con-
structor means that locale should delete the facet when the last reference to it goes away. Con-
versely, a nonzero constructor argument ensures that locale never deletes the facet. A nonzero
argument is meant for the rare case in which the lifetime of afacet is controlled directly by the pro-
grammer rather than indirectly through a locale. For example, we could try to create objects of the
standard facet type collate_byname<char> (8D.4.1.1) like this:

void f(const string& sl, const string& s2)
{

/1 normal case: (default) argument O meansthat locale is responsible for deletion:
collate<char>* p = new collate_byname<char>("pl");
locale loc(locale(), p);

/1 rarecase: argument 1 means that user is responsible for deletion:
collate<char>* q = new collate_byname<char>("ge", 1);

collate_byname<char> bugl(" sw"); /1 error: cannot destroy local variable
collate_byname<char> bug2(" no", 1); /1 error: cannot destroy local variable

..

/1 g cannot be deleted: collate_byname<char>'s destructor is protected
/1 no delete p; locale manages deletion of *p

}

That is, standard facets are useful when managed by locales, as base classes, and only rarely in
other ways.
A byname() facet isafacet from anamed locale in the the execution environment (8D.2.1).
For a facet to be found in a locale by has facet() and use facet() (8D.3.1), each kind of
facet must have anid:

class std:: locale: : id{

public:
id();

private:
id(const id&); /1 not defined
void operator=(const id&); /1 not defined

/1 representation

}s

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

882 Locales Appendix D

The copy operations are declared private and are |eft undefined to prevent copying (811.2.2).

The intended use of id isfor the user to define a static member of type id of each class supply-
ing a new facet interface (for example, see 8D.4.1). The locale mechanisms use ids to identify
facets (8D.2, 8D.3.1). In the obvious implementation of alocale, an id is used as an index into a
vector of pointers to facets, thereby implementing an efficient map<id, facet* >.

Data used to define a (derived) facet is defined in the derived class rather than in the base class
facet itself. This implies that the programmer defining a facet has full control over the data and
that arbitrary amounts of data can be used to implement the concept represented by a facet.

Note that all member functions of a user-defined facet should be const members. Generally, a
facet isintended to be immutable (8D.2.2).

D.3.1 Accessing Facetsin aLocale

The facets of a locale are accessed through the template function use_facet, and we can inquire
whether alocale has a specific facet, using the template function has_facet:

template <class Facet> bool has facet(const locale&) throw();
template <class Facet> const Facet& use facet(const locale&); // maythrow bad cast

Think of these template functions as doing a lookup in their locale argument for their template
parameter Facet. Alternatively, think of use facet as akind of explicit type conversion (cast) of a
localeto aspecific facet. Thisisfeasible because alocale can have only one facet of a given type.
For example:

void f(const locale& my_locale)

{
char c = use facet< numpunct<char> >(my_locale) . decimal_point() // use standard facet
/..
if (has_facet<Encrypt>(my_locale)) { /1 does my_locale contain an Encrypt facet?
const Encrypt& f = use_facet<Encrypt>(my_locale); // retrieve Encrypt facet
const Crypto c =f. get_crypto(); /1 use Encrypt facet
/..
}
/..
}

Note that use_facet returns a reference to a const facet, so we cannot assign the result of use_facet
to anon-const. This makes sense because a facet is meant to be immutable and to have only const
members.

If we try use_facet<X>(loc) and loc doesn’'t have an X facet, use _facet() throws bad_cast
(814.10). The standard facets are guaranteed to be available for &l locales (8D.4), so we don't
need to use has_facet for standard facets. For standard facets, use_facet will not throw bad_cast.

How might use_facet and has_facet be implemented? Remember that we can think of alocale
as amap<id, facet* > (8D.2). Given afacet type as the Facet template argument, the implementa-
tion of has_facet or use_facet can refer to Facet: : id and use that to find the corresponding facet.
A very naive implementation of has_facet and use_facet might look like this:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.3.1 Accessing FacetsinalLocale 883

/1 pseudoimplementation: imagine that a locale has a map<id,facet* > called facet_map

template <class Facet> bool has facet(const locale& loc) throw()

{
const locale: : facet* f = loc. facet_map[Facet:: id];
return f ? true: false;
}
template <class Facet> const Facet& use_facet(const locale& loc)
{
const locale: : facet* f = loc. facet_map[Facet: : id];
if (f) return static_cast<const Facet&>(*f);
throw bad_cast();
}

Another way of looking at the facet: : id mechanism is as an implementation of aform of compile-
time polymorphism. A dynamic_cast can be used to get very similar results to what use_facet pro-
duces. However, the specialized use facet can be implemented more efficiently than the more
general dynamic_cast.

An id redly identifies an interface and a behavior rather than a class. That is, if two facet
classes have exactly the same interface and implement the same semantics (as far as a locale is
concerned), they should be identified by the same id. For example, collate<char> and
collate_ byname<char> are interchangeable in a locale, so both are identified by
collate<char>:: id (8D.4.1).

If we define a facet with a new interface — such as Encrypt in f() — we must define a corre-
sponding id to identify it (see 8D.3.2 and 8D.4.1).

D.3.2 A Simple User-Defined Facet

The standard library provides standard facets for the most critical areas of cultural differences, such
as character sets and 1/0 of numbers. To examine the facet mechanism in isolation from the com-
plexities of widely used types and the efficiency concerns that accompany them, let me first present
afacet for atrivial user-defined type:

enum Season { spring, summer, fall, winter};

This was just about the simplest user-defined type | could think of. The style of 1/O outlined here
can be used with little variation for most simple user-defined types.

class Season_io: public locale: : facet {
public:
Season_io(int i =0) : locale:: facet(i) { }

~Season_io() { } /1 to make it possible to destroy Season io objects (8D.3)
virtual const string& to_str(Season x) const = 0; /1 string representation of x

/1 place Season correspondingto sin x:
virtual bool from str(const string& s, Season& x) const = 0;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

884 Locales Appendix D

static locale:: id id; // facet identifier object (8D.2, 8D.3, 8D.3.1)
b
locale: : id Season_io:: id; // definetheidentifier object

For simplicity, thisfacet is limited to representations using char.

The Season_io class provides a general and abstract interface for all Season_io facets. To
define the /O representation of a Season for a particular locale, we derive a class from Season io,
defining to_str() and from _str() appropriately.

Output of a Season is easy. If the stream has a Season _io facet, we can use that to convert the
valueinto astring. If not, we can output the int value of the Season:

ostream& operator<<(ostream& s, Season X)

const locale& loc = s. getloc(); // extract the stream’slocale (§21.7.1)
if (has_facet<Season_io>(loc)) return s<< use_facet<Season_io>(loc) . to_str(x);
return s<<int(x);

}

Note that this << operator is implemented by invoking << for other types. This way, we benefit
from the simplicity of using << compared to accessing the ostream’ s stream buffers directly, from
the locale sensitivity of those << operators, and from the error handling provided for those <<
operators. Standard facets tend to operate directly on stream buffers (8D.4.2.2, 8D.4.2.3) for maxi-
mum efficiency and flexibility, but for many simple user-defined types, there is no need to drop to
the streambuf level of abstraction.

Asistypical, input is a bit more complicated than output:

istream& operator>>(istream& s, Season& Xx)

{
const locale& loc = s. getloc(); /1 extract the stream’s locale (§21.7.1)
if (has_facet<Season_io>(loc)) { /1 read alphabetic representation
const Season_io& f = use_facet<Season_io>(loc);
string buf;
if (! (s>>buf && f. from_str(buf, x))) s. setstate(ios_base: : failbit);
return s
}
int i; /1 read numeric representation
S>> i;
X = Season(i);
return s
}

The error handling is simple and follows the error-handling style for built-in types. That is, if the

input string didn’t represent a Season in the chosen locale, the stream is put into the fail state. If

exceptions are enabled, thisimpliesthat anios_base: : failure exception is thrown (821.3.6).
Hereisatrivial test program:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.3.2 A SimpleUser-Defined Facet 885

int main() /1 trivial test

{
Season X;

/1 Use default locale (no Season_io facet) implies integer 1/0:
cin>> x;
cout << x << endl;

locale loc(locale(), new US season_io);
cout. imbue(loc); /1 Uselocale with Season_io facet
cin. imbue(loc); /1 Uselocale with Season io facet

cin>>x;
cout << x << endl;

Given theinput

2
summer

this program responded:

2
summer

To get this, we must define US _season_io to define the string representation of the seasons and
override the Season_io functions that convert between string representations and the enumerators:

class US season_io: public Season_io {
static const string seasons| |;
public:
const string& to_str(Season) const;
bool from_str(const string&, Season&) const;

/1 note: no US season _io::id

s
const string US season io:: seasons[] ={ "spring", "summer", "fall", "winter" };
const string& US season_jo:: to_str(Season x) const
{
if (x<spring| | winter<x) {
static const string ss=" no- such- season";
return ss,
}
return seasons| X ;
}

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

886 Locales Appendix D

bool US season_io:: from str(const string& s, Season& x) const

{
const string* beg = &seasons| spring] ;
const string* end = &seasons] winter] +1;
const string* p = find(beg, end, s); // §3.8.1, §18.5.2
if (p==end) return false;
X = Season(p- beg);
return true;

}

Note that because US season_io is simply an implementation of the Season _io interface, | did not
define an id for US season _io. In fact, if we want US season_io to be used as a Season_io, we
must not give US season_io its own id. Operations on locales, such as has_facet (§D.3.1), rely
on facets implementing the same concepts being identified by the sameid (8D.3).

The only interesting implementation question was what to do if asked to output an invalid Sea-
son. Naturally, that shouldn’'t happen. However, it is not uncommon to find an invalid value for a
simple user-defined type, so it is realistic to take that possibility into account. | could have thrown
an exception, but when dealing with simple output intended for humans to read, it is often helpful
to produce an ‘‘out of range’’ representation for an out-of-range value. Note that for input, the
error-handling policy is left to the >> operator, whereas for output, the facet function to_str()
implements an error-handling policy. Thiswas doneto illustrate the design alternatives. Ina‘*pro-
duction design,”’ the facet functions would either implement error handling for both input and out-
put or just report errors for >> and << to handle.

This Season_io design relied on derived classes to supply the locale-specific strings. An ater-
native design would have Season io itself retrieve those strings from a locale-specific repository
(see 8D.4.7). The possihility of having a single Season_io class to which the season strings are
passed as constructor argumentsis left as an exercise (8D.6[2]).

D.3.3 Usesof Locales and Facets

The primary use of locales within the standard library is in 1/O streams. However, the locale
mechanism is a general and extensible mechanism for representing culture-sensitive information.
The messages facet (8D.4.7) is an example of a facet that has nothing to do with 1/0O streams.
Extensions to the iostreams library and even 1/O facilities that are not based on streams might take
advantage of locales. Also, a user may use locales as a convenient way of organizing arbitrary
culture-sensitive information.

Because of the generality of the locale/facet mechanism, the possibilities for user-defined
facets are unlimited. Plausible candidates for representation as facets are dates, time zones, phone
numbers, social security numbers (personal identification numbers), product codes, temperatures,
genera (unit,value) pairs, postal codes (zip codes), clothe sizes, and ISBN numbers.

As with every other powerful mechanism, facets should be used with care. That something can
be represented as a facet doesn’t mean that it is best represented that way. The key issues to con-
sider when selecting a representation for cultural dependencies are — as ever — how the various deci-
sions affect the difficulty of writing code, the ease of reading the resulting code, the maintainability
of the resulting program, and the efficiency in time and space of the resulting 1/0O operations.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4 Standard Facets

D.4 Standard Facets

In <locale>, the standard library provides these facets for the classic() locale:

O Standard Facets (in the classic() locale) O
o Category Purpose Facets %
8D.41 collate String comparison collate<Ch> O
(8D.42 numeric Numericl/O numpunct<Ch> O
g num_get<Ch> B
O num_put<Ch> 0
[(8D.4.3 monetary MoneyI/O moneypunct<Ch> d
N moneypunct<Ch,true> O
E money_get<Ch> B
0 money_put<Ch> 0
(BD.44 time Timel/O time_get<Ch> O
O time_put<Ch> 0
8D.45 ctype Character classification ctype<Ch> %
0 codecvt<Ch,char,mbstate t>
H8D.47 messages Messageretrieval messages<Ch> H

887

In this table, Ch is as shorthand for char or wchar_t. A user who needs standard 1/0 to deal with
another character type X must provide suitable versions of facets for X. For example,
codecvt<X, char, mbstate t> (8D.4.6) might be needed to control conversions between X and
char. The mbstate t type is used to represent the shift states of a multibyte character representa-
tion (8D.4.6); mbstate _t is defined in <cwchar> and <wchar. h>. The equivalent to mbstate t for

an arbitrary character type X is char_traits<X>:: state type.
In addition, the standard library provides these facets in <locale>:

O Standard Facets O
= Category Purpose Facets %
t§D.4.1 collate String comparison collate_byname<Ch> D
(8D.42 numeric Numericl/O numpunct_byname<Ch> O
g num_get<C,In> B
0 num_put<C,Out> N
[(BD.4.3 monetary Money|/O moneypunct_byname<Ch,International> O
O money_get<C,In> O
E money_put<C,Out> g
8D.44 time Timel/O time_put_byname<Ch,Out> O
(8D.45 ctype Character classification ~ ctype byname<Ch> O
FEDA.? messages Message retrieval messages byname<Ch> H

When instantiating a facet from this table, Ch can be char or wchar_t; C can be any character type
(820.1). International can be true or false; true means that a four-character ‘‘international’’

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.

Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

888 Locales Appendix D

representation of a currency symbol isused (8D.4.3.1). The mbstate t typeis used to represent the
shift states of a multibyte character representation (8D.4.6); mbstate t is defined in <cwchar> and
<wchar. h>.

In and Out are input iterators and output iterators, respectively (819.1, §19.2.1). Providing the
_put and _get facets with these template arguments allows a programmer to provide facets that
access nonstandard buffers (8D.4.2.2). Buffers associated with iostreams are stream buffers, so the
iterators provided for those are ostreambuf_iterators (819.2.6.1, 8D.4.2.2). Consequently, the
function failed() (819.2.6.1) isavailable for error handling.

An F_byname facet is derived from the facet F. F_byname provides the identical interface to
F, except that it adds a constructor taking a string argument naming a locale (see 8D.4.1). The
F_byname(name) provides the appropriate semantics for F defined in locale(name) . Theideais
to pick aversion of a standard facet from a named locale (8D.2.1) in the program’ s execution envi-
ronment. For example;

void f(vector<string>& v, const locale& loc)

{
locale di(loc, new collate byname<char>("da")); // useDanish string comparison
locale dk(di, new ctype byname<char>("da")); /1 use Danish character classification
sort(v. begin(), v. end(), dk);
/..

}

This new dk locale will use Danish-style strings but will retain the default conventions for numbers.
Note that because facet’'s second argument is by default 0, the locale manages the lifetime of a
facet created using operator new (8D.3).

Like the locale constructors that take string arguments, the _byname constructors access the
program’s execution environment. This implies that they are very slow compared to constructors
that do not need to consult the environment. It isamost always faster to construct alocale and then
to access its facets than it is to use _byname facets in many places in a program. Thus, reading a
facet from the environment once and then using the copy in main memory repeatedly is usualy a
good idea. For example:

locale dk("da"); /1 read the Danish locale (incl. all of its facets) once
/1 then use the dk locale and its facets as needed

void f(vector<string>& v, const locale& loc)
{

const collate<char>& col = use_facet< collate<char> >(dk);
const collate<char>& ctyp = use_facet< ctype<char> >(dk);

locale di(loc, col); // useDanish string comparison
locale d2(d1, ctyp); // useDanish character classification and Danish string comparison

sort(v. begin(), v. end(), d2);
Il ...

}

The notion of categories gives a simpler way of manipulating standard facetsin locales. For exam-
ple, given the dk locale, we can construct a locale that reads and compares strings according to the

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4 Standard Facets 889

rules of Danish (that give three extra vowels compared to English) but that retains the syntax of
numbers used in C++;

locale dk us(locale:: classic(), dk, collate| ctype); // Danish letters, American numbers

The presentations of individual standard facets contains more examples of facet use. In particular,
the discussion of collate (§D.4.1) brings out many of the common structural aspects of facets.

Note that the standard facets often depend on each other. For example, num_put depends on
numpunct. Only if you have a detailed knowledge of individual facets can you successfully mix
and match facets or add new versions of the standard facets. In other words, beyond the simple
operations mentioned in §21.7, the locale mechanisms are not meant to be directly used by novices.

The design of an individual facet is often messy. The reason is partialy that facets have to
reflect messy cultural conventions outside the control of the library designer, and partially that the
C++ standard library facilities have to remain largely compatible with what is offered by the C stan-
dard library and various platform-specific standards. For example, POSIX provideslocale facilities
that it would be unwise for alibrary designer to ignore.

On the other hand, the framework provided by locales and facets is very general and flexible. A
facet can be designed to hold any data, and the facet’ s operations can provide any desired operation
based on that data. If the behavior of a new facet isn’t overconstrained by convention, its design
can be simple and clean (8D.3.2).

D.4.1 String Comparison
The standard collate facet provides ways of comparing arrays of characters of type Ch:

template <class Ch>
class std:: collate: public locale:: facet {
public:

typedef Ch char_type;

typedef basic_string<Ch> string_type;

explicit collate(size t r =0);

int compare(const Ch* b, const Ch* e, const Ch* b2, const Ch* €2) const
{ return do_compare(b, e, b2, €2); }

long hash(const Ch* b, const Ch* €) const{ return do_hash(b, €); }
string_type transform(const Ch* b, const Ch* €) const{ return do_transform(b, €); }
static locale:: id id; // facetidentifier object (8D.2, 8D.3, 8D.3.1)

protected:
~ collate(); /1 note: protected destructor

virtual int do_compare(const Ch* b, const Ch* e, const Ch* b2, const Ch* €2) const;
virtual string_type do_transform(const Ch* b, const Ch* €) const;
virtual long do_hash(const Ch* b, const Ch* €) const;

s

Like al facets, collate is publically derived from facet and provides a constructor that takes an
argument that tells whether class locale controls the lifetime of the facet (8D.3).

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

890 Locales Appendix D

Note that the destructor is protected. The collate facet isn’t meant to be used directly. Rather,
it is intended as a base class for all (derived) collation classes and for locale to manage (8D.3).
Application programmers, implementation providers, and library vendors will write the string com-
parison facets to be used through the interface provided by collate.

The compare() function does the basic string comparison according to the rules defined for a
particular collate; it returns 1 if the first string is lexicographically greater than the second, 0 if the
strings are identical, and - 1 if the second string is greater than the first. For example:

void f(const string& sl, const string& s2, collate<char>& cmp)

{
const char* csl =sl. data(); // because compare() operateson char[]s
const char* cs2 = s2. data();
switch (cmp. compare(csl, csl+sl. size(), €S2, cs2+s2. size()) {
case O: /1 identical strings according to cmp
/..
break;
case- 1: /] sl<s2
/..
break;
case 1. /] s1>s2
/...
break;
}
}

Note that the collate member functions compare arrays of Ch rather than basic_strings or zero-
terminated C-style strings. In particular, a Ch with the numeric value O is treated as an ordinary
character rather than as a terminator. Also, compare() differs from stremp() , returning exactly
thevalues- 1, 0, and 1 rather than simply 0 and (arbitrary) negative and positive values (§20.4.1).

The standard library string is not locale sensitive. That is, it compares strings according to the
rules of the implementation’s character set (8C.2). Furthermore, the standard string does not pro-
vide adirect way of specifying comparison criteria (Chapter 20). To do alocale-sensitive compari-
son, we can use a collate’'s compare() . Notationally, it can be more convenient to use collate's
compare() indirectly through alocale' s operator() (8D.2.4). For example:

void f(const string& sl, const string& s2, const char* n)
{

bool b=sl==s2; /1 compare using implementation’s character set values

const char* csl =sl. data(); // because compare() operateson char[]s
const char* cs2 = s2. data();

typedef collate<char> Col;

const Col& glob = use _facet<Col>(locale()); /1 fromthe current global locale
int i0 = glob. compare(csl, csl+sl. size(), cs2, cs2+s2. size());

const Col& my_coll = use facet<Col>(locale("")); // frommy preferredlocale
int il=my_coll. compare(csl, csl+sl. size(), cs2, cs2+s2. size());

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.1 String Comparison 891

const Col& coll = use_facet<Col>(locale(n)); /1 fromlocale named n
int i2 = coll. compare(csl, csl+sl. size(), cs2, cs2+s2. size());

int i3=1locale() (51, s2); /1 compare using the current global locale

int i4=1locale("") (sl, s2); /1 compare using my preferred locale

int i5=1locale(n) (sl, s2); /1 compare using the locale named n

/..

}

Here, i0==i3, i1==i4, and i2==i5. Itisnot difficult to imagine casesin whichi2, i3, and i4 differ.
Consider this sequence of words from a German dictionary:

Dialekt, Diat, dich, dichten, Dichtung

According to convention, houns (only) are capitalized, but the ordering is not case sensitive.
A case-sensitive German sort would place al words starting with D before d:

Dialekt, Diat, Dichtung, dich, dichten

The & (umlaut a) is treated as ‘‘a kind of a,’' so it comes before c. However, in most common
character sets, the numeric value of & is larger than the numeric value of c¢. Consequently,
int(" ¢) <int(” &), and the simple default sort based on numeric values gives:

Dialekt, Dichtung, Diat, dich, dichten

Writing a compare function that orders this sequence correctly according to the dictionary is an
interesting exercise (8D.6[3]).

The hash() function calculates a hash value (817.6.2.3). Obviously, this can be useful for
building hash tables.

The transform() function produces a string that, when compared to other strings, gives the
same result as would a comparison to the argument string. The purpose of transform() isto allow
optimization of code in which one string is compared to many others. This is useful when imple-
menting a search for one or more strings among a set of strings.

The public compare() , hash() , and transform() functions are implemented by calls to the
protected virtual functionsdo_compare() , do_hash() , and do_transform() , respectively. These
“*do_ functions”’ can be overridden in derived classes. This two-function strategy allows the
library implementer who writes the non-virtual functions to provide some common functionality for
all callsindependently of what the user-supplied do_ function might do.

The use of virtual functions preserves the polymorphic nature of the facet but could be costly.
To avoid excess function calls, alocale can determine the exact facet used and cache any values it
might need for efficient execution (8D.2.2).

The static member id of type locale: : id is used to identify afacet (8D.3). The standard func-
tions has facet and use facet depend on the correspondence between ids and facets (8D.3.1).
Two facets providing exactly the same interface and semantics to locale should have the same id.
For example, collate<char> and collate_byname<char> (8D.4.1.1) have the same id. Con-
versely, two facets performing different functions (as far as locale is concerned) must have differ-
ent ids. For example, numpunct<char> and num_put<char> have different ids (8D.4.2).

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

892 Locales Appendix D

D.4.1.1 Named Collate

A collate_byname is a facet that provides a version of collate for a particular locale named by a
constructor string argument:

template <class Ch>
class std:: collate_byname: public collate<Ch> {
public:

typedef basic_string<Ch> string_type;

explicit collate_byname(const char*, size t r =0); // construct fromnamed locale
// note: noid and no new functions

protected:
~collate_byname(); // note: protected destructor

/1 override collate<Ch>'s virtual functions:

int do_compare(const Ch* b, const Ch* e, const Ch* b2, const Ch* e2) const;
string_type do_transform(const Ch* b, const Ch* €) const;
long do_hash(const Ch* b, const Ch* €) const;

}s

Thus, a collate_byname can be used to pick out a collate from a locale named in the program’s
execution environment (8D.4). One obvious way of storing facets in an execution environment
would be as datain afile. A lessflexible aternative would be to represent a facet as program text
and datain a_byname facet.

The collate_byname<char> class is an example of a facet that doesn’t have its own id (8D.3).
In a locale, collate_ byname<Ch> is interchangesble with collate<Ch>. A collate and a
collate_byname for the same locae differ only in the extra constructor offered by the
collate_byname and in the semantics provided by the collate_byname.

Note that the _byname destructor is protected. This implies that you cannot have a _byname
facet asalocal variable. For example:

void f()

collate_byname<char> my_coll(""); // error: cannot destroy my_coll
/..

}

This reflects the view that using locales and facets is something that is best done at a fairly high
level in a program to affect large bodies of code. An example is setting the global locale (8D.2.3)
or imbuing a stream (§21.6.3, 8D.1). If necessary, we could derive a class with a public destructor
from a_byname class and create local variables of that class.

D.4.2 Numeric Input and Output

Numeric output is done by a num_put facet writing into a stream buffer (§21.6.4). Conversely,
numeric input is done by a num_get facet reading from a stream buffer. The format used by
num_put and num_get is defined by a‘‘numerica punctuation’” facet, numpunct.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.2.1 Numeric Punctuation 893

D.4.2.1 Numeric Punctuation
The numpunct facet defines the 1/0O format of built-in types, such as bool, int, and double:

template <class Ch>
class std:: numpunct : public locale: : facet {
public:

typedef Ch char_type;

typedef basic_string<Ch> string_type;

explicit numpunct(size t r =0);

Ch decimal_point() const; /1 . inclassic()

Ch thousands_sep() const; /1’ inclassic()

string grouping() const; /1 " in classic(), meaning no grouping

string_type truename() const; /1 "true" in classic()

string_type falsename() const; /] "false" in classic()

static locale:: id id; // facetidentifier object (8D.2, 8D.3, 8D.3.1)
protected:

~ numpunct();

/1 virtual ‘*do_’" functions for public functions (see 8D.4.1)
s

The characters of the string returned by grouping() are read as a sequence of small integer values.
Each number specifies a number of digits for a group. Character 0 specifies the rightmost group
(the least-significant digits), character 1 the group to the left of that, etc. Thus, " \004\002\003"
describes a number, such as 123- 45- 6789 (provided you use " - * as the separation character). If
necessary, the last number in a grouping pattern is used repeatedly, so "\003" is equivalent to
"\003\003\003" . As the name of the separation character, thousands_sep() , indicates, the most
common use of grouping is to make large integers more readable. The grouping() and
thousands_sep() functions define aformat for both input and output of integers. They aso define
the the format for the integer part of a floating point number, but not for the digits after the
decimal_point() .

We can define a new punctuation style by deriving from numpunct. For example, | could
define facet My_punct to write integer values using spaces to group the digits by threes and
floating-point values, using a European-style comma as the ** decimal point:”’

class My punct : public std: : numpunct<char> {
public:

typedef char char_type;

typedef string string_type;

explicit My _punct(size t r =0) : std:: numpunct<char>(r) { }
protected:
char do_decimal_point() const{ return”, " ; } // comma

char do_thousands sep() const{ return” "; } // space
string do_grouping() const{ return"\003"; } // 3-digit groups

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

894 Locales Appendix D

void f()

cout << setprecision(4) << fixed;

cout << "style A: " << 12345678 <<" *** " << 1234. 5678 << \n";
locale loc(locale(), new My _punct);

cout. imbue(loc);

cout << "style B: " << 12345678 << " *** " << 1234. 5678 << \n";

}
This produced:

style A: 12345678 *** 1234. 5678
style B: 12 345 678 *** 1 234, 5678

Note that imbue() stores a copy of its argument in its stream. Consequently, a stream can rely on
an imbued locale even after the original copy of that locale has been destroyed. If an iostream has
its boolalpha flag set (§21.2.2, §21.4.1), the strings returned by truename() and falsename() are
used to represent true and fal se, respectively; otherwise, 1 and 0 are used.

A _byname version (8D.4, 8D.4.1) of numpunct is provided:

template <class Ch> class std:: numpunct_byname: public numpunct<Ch>{ /* .. */ };

D.4.2.2 Numeric Output

When writing to a stream buffer (§21.6.4), an ostream relies on the num_put facet:

template <class Ch, class Out = ostreambuf_iterator<Ch> >
class std:: num_put: public locale:: facet {
public:

typedef Ch char_type;

typedef Out iter_type;

explicit num_put(size t r =0);

/1 put value "v" to buffer position "b" in stream"s":

Out put(Out b, ios base& s, Ch fill, bool v) const;

Out put(Out ios_base& s, Ch fill, long v) const;

Out put(Out ios base& s, Ch fill, unsigned long v) const;
Out put(Out ios_base& s, Ch fill, double v) const;

Out put(Out ios_base& s, Ch fill, long double v) const;
Out put(Out ios_base& s, Ch fill, const void* v) const;

static locale: : id id; // facet identifier object (8D.2, 8D.3, 8D.3.1)

CoooDOoUD

protected:
“num_put();

/1 virtual **do_"" functions for public functions (see 8D.4.1)

}s

The output iterator (819.1, §19.2.1) argument, Out, identifies where in an ostream’s stream buffer
(821.6.4) put() places characters representing the numeric value on output. The value of put() is

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.2.2 Numeric Output 895

that iterator positioned one past the last character position written.

Note that the default specialization of num_put (the one where the iterator used to access char-
acters is of type ostreambuf _iterator<Ch>) is part of the standard locales (8D.4). If you want to
use another specialization, you'll have to make it yourself. For example:

template<class Ch>
class Sring_numput : public std:: num_put<Ch, typename basic_string<Ch>:: iterator> {

public:
String_numput() : std:: num_put<Ch, typename basic_string<Ch>:: iterator>(1) { }
b
void f(int i, string&s, int pos) /] format i into s starting at pos
{
String_numput<char> f;
i0s_base& xxx = cout; /1 use cout’s formatting rules
f. put(s. begin() +pos, xxx, = “,i); // formatiintos
}

The ios_base argument is used to get information about formatting state and locale. For example,
if padding is needed, the fill character is used as required by the ios_base argument. Typically, the
stream buffer written to through b is the buffer associated with an ostream for which s is the base.
Note that an ios_base is not a simple object to construct. In particular, it controls many aspects of
formatting that must be consistent to achieve acceptable output. Consequently, ios_base has no
public constructor (§21.3.3).

A put() function also usesitsios_base argument to get the stream’s locale() . That localeis
used to determine punctuation (8D.4.2.1), the alphabetic representation of Booleans, and the con-
version to Ch. For example, assuming that s is put() 's ios_base argument, we might find code
likethisinaput() function:

const locale& loc =s. getloc();

/..

wchar_t w = use_facet< ctype<char> >(loc) . widen(c); /1 char to Ch conversion
/..

string pnt = use_facet< numpunct<char> >(loc) . decimal_point(); /1 default: .

/..

string flse = use_facet< numpunct<char> >(loc) . falsename(); /1 default: "false"

A standard facet, such as num_put<char>, is typically used implicitly through a standard I/O
stream function. Consequently, most programmers need not know about it. However, the use of
such facets by standard library functions is interesting because they show how I/O streams work
and how facets can be used. As ever, the standard library provides examples of interesting pro-
gramming techniques.

Using num_put, the implementer of ostream might write:

template<class Ch, class Tr>
ostream& std: : basic_ostream<Ch, Tr>:: operator<<(double d)

{
sentry guard(* this); /] see821.3.8
if (! guard) return *this;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

896 Locales Appendix D

try {
if (use_facet< num_put<Ch> >(getloc()) . put(* this, * this, this- >fill(), d) . failed())
setstate(badbit) ;

}

catch(...) {
handle_ioexception(* this);

}

return * this;

}

A lot is going on here. The sentry ensures that al prefix and suffix operations are performed
(821.3.8). We get the ostream's locale by calling its member function getloc() (821.7). We
extract num_put from that locale using use facet (8D.3.1). That done, we call the appropriate
put() function to do the real work. An ostreambuf_iterator can be constructed from an ostream
(819.2.6), and an ostream can be implicitly converted to its base class ios_base (§21.2.1), so the
two first argumentsto put() are easily supplied.

A call of put() returns its output iterator argument. This output iterator is obtained from a
basic_ostream, so it is an ostreambuf_iterator. Consequently, failed() (819.2.6.1) isavailableto
test for failure and to allow us to set the stream state appropriately.

| did not use has_facet, because the standard facets (8D.4) are guaranteed to be present in every
locale. If that guaranteeisviolated, bad_cast isthrown (8D.3.1).

The put() function calls the virtual do_put() . Consequently, user-defined code may be exe-
cuted, and operator<<() must be prepared to handle an exception thrown by the overriding
do_put() . Also, num_put may not exist for some character types, so use facet() might throw
std: : bad_cast (8D.3.1). The behavior of a<< for abuilt-in type, such asdouble, is defined by the
C++ standard. Consequently, the question is not what handle_ioexception() should do but rather
how it should do what the standard prescribes. If badbit is set in this ostream’s exception state
(821.3.6), the exception is simply rethrown. Otherwise, an exception is handled by setting the
stream state and continuing. In either case, badbit must be set in the stream state (§21.3.3):

template<class Ch, class Tr>
void handle_ioexception(std: : basic_ostream<Ch, Tr>&s) // called from catch clause

{
if (s. exceptions() &os_base: : badbit) {

try {

s. setstate(ios_base: : badbit); // might throw basic_ios::failure
} catch(...) {}
throw; /1 rethrow

}s. setstate(ios_base: : badbit);
}

The try-block is needed because setstate() might throw basic _ios:: failure (§21.3.3, §21.3.6).
However, if badbit is set in the exception state, operator<<() must rethrow the exception that
caused handle_ioexception() to be called (rather than simply throwing basic_ios: : failure).

The << for abuilt-in type, such as double, must be implemented by writing directly to a stream
buffer. When writing a << for a user-defined type, we can often avoid the resulting complexity by
expressing the output of the user-defined type in terms of output of existing types (8D.3.2).

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.2.3

D.4.2.3 Numeric Input

Numeric Input

When reading from a stream buffer (§21.6.4), an istream relies on the num_get facet:

template <class Ch, class In = istreambuf_iterator<Ch> >
class std:: num_get: public locale: : facet {

public:

typedef Ch char_type;
typedef In iter_type;

explicit num_get(size t r=0);

/1 read[b:e) into v, using formatting rules fromss, reporting errors by setting r:

In get(In
In get(In
In get(In
In get(In
In get(In
In get(In
In get(In
In get(In
In get(In

Sooo

S oOoOOoTCOoOoTUT

static locale:

protected:
~ num_get(

/1 virtual ‘““do_"" functions for public functions (see 8D.4.1)

}s

)

In
In
In
In
In
In
In
In
In

OSDODODODDODOD

ODODODD®OD®DD®OD

ios_base& s,
ios_base& s,
ios_base& s,
ios_base& s,
ios_base& s,
ios_base& s,
ios_base& s,
ios_base& s,
ios_base& s,

ios_base: :
ios_base: :
ios_base: :
ios_base: :
ios_base: :
ios_base::
ios_base: :
ios_base: :
ios_base: :

iostate&r,
iostate& r,
iostate& r,
iostate& r,
jostate&r,
iostate& r,
iostate& r,
iostate& r,
jostate&r,

bool& v) const;

long& v) const;

unsigned short& v) const;
unsigned int&v) const;
unsigned long& v) const;
float& v) const;

double& v) const;

long double& v) const;
void* & v) const;

22 id id; // facet identifier object (8D.2, 8D.3, 8D.3.1)

897

Basically, num_get is organized like num_put (8D.4.2.2). Since it reads rather than writes, get()

needs apair of input iterators, and the argument designating the target of the read is areference.

Theiostate variabler is set to reflect the state of the stream. If avalue of the desired type could
not be read, failbit is set in r; if the end of input was reached, eofbit isset inr. Aninput operator
will use r to determine how to set the state of its stream. If no error was encountered, the value
read is assigned though v; otherwise, v is left unchanged.

A sentry is used to ensure that the stream’ s prefix and suffix operations are performed (821.3.8).
In particular, the sentry is used to ensure that we try to read only if the stream isin a good state to

start with.

The implementer of istream might write:

template<class Ch, class Tr>
istream& std: : basic_istream<Ch, Tr>:: operator>>(double& d)

{

sentry guard(* this);

/] s£e821.3.8

if (! guard) return * this;

iostate state=0;

/1 good

istreambuf_iterator<Ch> eos;

double dd;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.

Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

898 Locales Appendix D

try {
use_facet< num_get<Ch> >(getloc()) . get(* this, eos, * this, state, dd);

if (state==0]| | state==eofbit) d=dd; // set valueonly if get() succeeded
setstate(state) ;

}
catch(...) {

handle_ioexception(* this); /] see8D.4.2.2
}

return * this;

}

Exceptions enabled for the istream will be thrown by setstate() in case of error (821.3.6).
By defining a numpunct, such as My_punct from 8D.4.2, we can read using nonstandard punc-
tuation. For example:

void f()
{

cout << "style A: "

int il;

double di;

cin>>i1>>di; /1 read using standard ‘12345678’ format

locale loc(locale: : classic(), new My_punct);

cin. imbue(loc);

cout << "style B: "

int i2;

double d2;

cin>>il>>dz; /1 read using the ‘*12 345 678'’ format

}

If we want to read really unusual numeric formats, we have to override do_get() . For example,
we might define anum_get that read Roman numerals, such as XXI and MM (8D.6[15]).

D.4.3 Input and Output of Monetary Values

The formatting of monetary amounts is technically similar to the formatting of ‘‘plain’’ numbers
(8D.4.2). However, the presentation of monetary amounts is even more sensitive to cultural differ-
ences. For example, a negative amount (aloss, a debit), such as - 1. 25, should in some contexts be
presented as a (positive) number in parentheses: (1. 25) . Similarly, color isin some contexts used
to ease the recognition of negative amounts.

There is no standard ‘' money type.”’ Instead, the money facets are meant to be used explicitly
for numeric values that the programmer knows to represent monetary amounts. For example:

class Money { // simple type to hold a monetary amount
long int amount;

public:
Money(long int i) : amount(i) { }
operator long int() const{ return amount; }

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.3 Input and Output of Monetary Values 899

I ..

void f(long int i)
{

}

cout << "value=" <<i<<" amount=" << Money(i) << endl;

The task of the monetary facetsis to make it reasonably easy to write an output operator for Money
so that the amount is printed according to local convention (see §D.4.3.2). The output would vary
depending on cout’slocale. Possible outputs are:

value= 1234567 amount= $12345. 67
value= 1234567 amount= 12345, 67 DKK
value= - 1234567 amount= $- 12345. 67
value= - 1234567 amount= - $12345. 67
value= - 1234567 amount= (CHF12345, 67)

For money, accuracy to the smallest currency unit is usually considered essential. Consequently, |
adopted the common convention of having the integer value represent the number of cents (pence,
are, fils, cents, etc.) rather than the number of dollars (pounds, kroner, dinar, euro, etc.). This con-
vention is supported by moneypunct’s frac_digits() function (8D.4.3.1). Similarly, the appear-
ance of the **decimal point’’ is defined by decimal_point() .

The facets money_get and money_put provide functions that perform 1/0 based on the format
defined by the money_base facet.

A simple Money type can be used simply to control |/O formats or to hold monetary values. In
the former case, we cast values of (other) types used to hold monetary amounts to Money before
writing, and we read into Money variables before converting them to other types. It is less error
prone to consistently hold monetary amounts in a Money type; that way, we cannot forget to cast a
value to Money before writing it, and we don’t get input errors by trying to read monetary valuesin
locale-insensitive ways. However, it may be infeasible to introduce a Money type into a system
that wasn't designed for that. In such cases, applying Money conversions (casts) to read and write
operations is necessary.

D.4.3.1 Money Punctuation

The facet controlling the presentation of monetary amounts, moneypunct, naturally resembles the
facet for controlling plain numbers, numpunct (8D.4.2.1):

class std:: money_base {

public:
enum part { none, space, symbol, sign, value}; /1 parts of value layout
struct pattern{ char field[4]; }; /1 layout specification
i

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

900 Locales Appendix D

template <class Ch, bool International = false>
class std:: moneypunct : public locale: : facet, public money_base {
public:

typedef Ch char_type;

typedef basic_string<Ch> string_type;

explicit moneypunct(size t r =0);

Ch decimal_point() const; /1 . inclassic()
Ch thousands_sep() const; /1, inclassic()
string grouping() const; /1 "™ in classic(), meaning "no grouping"

string_type curr_symbol() const; /1 "$" inclassic()
string_type positive_sign() const; /1 "" in classic()
string_type negative sign() const; // "-"inclassic()

int frac_digits() const; /1 number of digits after the decimal point; 2 in classic()
pattern pos_format() const; /1 { symbol, sign, none, value } in classic()
pattern neg_format() const; /1 { symbol, sign, none, value} in classic()
static const bool intl = International; /1 useinternational monetary formats
static locale:: id id; // facet identifier object (8D.2, 8D.3, 8D.3.1)
protected:
~ moneypunct();

/1 virtual ‘**do_"" functions for public functions (see 8D.4.1)

The facilities offered by moneypunct are intended primarily for use by implementers of money_put
and money_get facets (8D.4.3.2, 8D.4.3.3).

The decimal_point() , thousands_sep() , and grouping() members behave as their equiva
lents in numpunct.

The curr_symbol() , positive_sign() , and negative_sign() members return the string to be
used to represent the currency symbol (for example, $, ¥, FRF, DKK), the plus sign, and the minus
sign, respectively. If the International template argument was true, the intl member will also be
true, and *‘international’’ representations of the currency symbols will be used. Such an *‘interna-
tional’’ representation is afour-character string. For example:

"USD "
" DKK "
"EUR"

The last character is aterminating zero. The three-letter currency identifier is defined by the 1SO-
4217 standard. When International is false, a‘‘local’’ currency symbol, such as $, £, and ¥, can
be used.

A pattern returned by pos format() or neg format() is four parts defining the sequence in
which the numeric value, the currency symbol, the sign symbol, and whitespace occur. Most com-
mon formats are trivially represented using this simple notion of a pattern. For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.3.1 Money Punctuation 901

+$ 123. 45 /1 { sign, symboal, space, value } where positive_sign() returns"+"

$+123. 45 /1 { symbol, sign, value, none } where positive_sign() returns"+"
$123. 45 /1 { symbol, sign, value, none } where positive_sign() returns""
$123. 45- /1 { symbol, value, sign, none }

-123. 45 DKK // { sign, value, space, symbol }
($123. 45) /1 { sign, symbol, value, none } where negative_sign() returns"()"
(1123. 45DKK) // { sign, value, symbol, none} where negative _sign() returns"()"

Representing a negative number using parentheses is achieved by having negative sign() returna
string containing the two characters () . The first character of asign string is placed where sign is
found in the pattern, and the rest of the sign string is placed after all other parts of the pattern. The
most common use of this facility is to represent the financial community’s convention of using
parentheses for negative amounts, but other uses are possible. For example:

-$123. 45 /1 { sign, symboal, value, none } where negative_sign() returns
$123. 45 silly /1 { sign, symbol, value, none} where negative_sign() returns" silly"

The values sign, value, and symbol must each appear exactly once in a pattern. The remaining
value can be either space or none. Where space appears, at least one and possibly more white-
space characters may appear in the representation. Where none appears, except at the end of a pat-
tern, zero or more whitespace characters may appear in the representation.

Note that these strict rules ban some apparently reasonable patterns:

pattern pat ={ sign, value, none, none}; /1 error: no symbol

The frac_digits() function indicates where the decimal_point() is placed. Often, monetary

amounts are represented in the smallest currency unit (8D.4.3). Thisunit istypically one hundredth

of the major unit (for example, a ¢ is one hundredth of a$), so frac_digits() isoften 2.
Hereisasimple format defined as afacet:

class My _money _io: public moneypunct<char, true> {
public:
explicit My_money_io(size_t r = 0) : moneypunct<char, true>(r) { }

char_type do_decimal_point() const{ return”."; }
char_type do_thousands sep() const{ return”,”; }
string do_grouping() const{ return "\003\003\003" ; }

string_type do_curr_symbol() const{ return"USD"; }
string_type do_positive_sign() const { return""; }
string_type do_negative sign() const{ return"()"; }

int do_frac_digits() const{ return 2; } // two digitsafter decimal point

pattern do_pos_format() const

{

static pattern pat = { sign, symbol, value, none};
return pat;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

902 Locales Appendix D

pattern do_neg_format() const

{
static pattern pat = { sign, symbol, value, none};
return pat;

}s

Thisfacet is used in the Money input and output operations defined in 8D.4.3.2 and 8D.4.3.3.
A _byname version (8D.4, 8D.4.1) of moneypunct is provided:

template <class Ch, bool Intl = false>
class std:: moneypunct_byname : public moneypunct<Ch, Intl>{ /* ..*/ };

D.4.3.2 Money Output

The money_put facet writes monetary amounts according to the format specified by moneypunct.
Specifically, money_put provides put() functions that place a suitably formatted character repre-
sentation into the stream buffer of a stream:

template <class Ch, class Out = ostreambuf_iterator<Ch> >
class std:: money_put : public locale: : facet {
public:

typedef Ch char_type;

typedef Out iter_type;

typedef basic_string<Ch> string_type;

explicit money_put(size t r =0);

/1 put value"V" into buffer position "b":
Out put(Out b, bool intl, ios base& s, Ch fill, long double v) const;
Out put(Out b, bool intl, ios base&s, Ch fill, const string_type& v) const;

static locale: : id id; // facet identifier object (8D.2, 8D.3, 8D.3.1)

protected:
" money_put();

/1 virtual **do_"" functions for public functions (see 8D.4.1)

}s

The b, s, fill, and v arguments are used as for num_put’s put() functions (8D.4.2.2). The intl
argument indicates whether a standard four-character ‘‘internationa’’ currency symbol or a
““local’”’ symbol isused (8D.4.3.1).

Given money_put, we can define an output operator for Money (8D.4.3):

ostreamé& operator<<(ostream& s, Money m)

{
ostream: : sentry guard(s); /1 see §21.3.8

if (! guard) return s;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.3.2 Money Output 903

try {
const money_put<char>& f = use_facet< money_put<char> >('s. getloc());
if (m==static_cast<long double>(m)) { // mcan be represented as along double
if (f. put(s, true, s, s. fill(), m) . failed()) s. setstate(ios base: : badbit);

ese{

ostringstream v;,

v<<m; /1 convert to string representation

if (f. put(s, true, s, s. fill(), v. str()) . failed()) s. setstate(ios_base: : badbit);
}

}
catch(...) {

handle_ioexception(s); /] see8D.4.2.2
}

return s,
}

If along double doesn’t have sufficient precision to represent the monetary value exactly, | convert
the valueto its string representation and output that using the put() that takes a string.

D.4.3.3 Money Input

The money_get facet reads monetary amounts according to the format specified by moneypunct.
Specifically, money_get provides get() functions that extract a suitably formatted character repre-
sentation from the stream buffer of a stream:

template <class Ch, class In = istreambuf_iterator<Ch> >
class std:: money_get : public locale: : facet {
public:

typedef Ch char_type;

typedef In iter_type;

typedef basic_string<Ch> string_type;

explicit money _get(size t r = 0);

/1 read[b:e) into v, using formatting rules froms, reporting errors by setting r:
In get(In b, In e, bool intl, ios_base& s, ios_base: : iostate& r, long double& v) const;
In get(In b, In e, bool intl, ios base& s, ios base:: iostate& r, string_type& v) const;

static locale: : id id; // facet identifier object (8D.2, 8D.3, 8D.3.1)
protected:

" money_get();

/1 virtual **do_"" functions for public functions (see 8D.4.1)

}s

The b, €, s, fill, and v arguments are used as for num_get’'s get() functions (8D.4.2.3). The intl
argument indicates whether a standard four-character ‘‘international’’ currency symbol or a
“local’” symbol isused (8D.4.3.1).

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

904 Locales Appendix D

A well-defined pair of money_get and money_put facets will provide output in a form that can
be read back in without errors or loss of information. For example:
int main()
{
Money m;
while (cin>>m) cout << m<<"\n";

}

The output of this simple program should be acceptable as its input. Furthermore, the output pro-
duced by a second run given the output from afirst run should be identical to itsinput.
A plausible input operator for Money would be:

istream& operator>>(istream& s, Money& m)

{
istream; : sentry guard(s); /1 see §21.3.8

if (guard) try {
ios_base: : iostate state = 0; /1 good
istreambuf_iterator<char> eos;
string str;

use_facet< money_get<char> >('s. getloc()) . get(s, eos, true, state, str);

if (state==0| | state==ios_base: : eofbit) { // setvalueonly if get() succeeded
long int i = strtol(str. c_str(), 0, 0); // for strtol(), see §20.4.1
if (errno==ERANGE)
state | = ios_base: : failbit;
else
m=i; /1 set value only if conversion to long int succeeded
S. setstate(state);

}

}
catch(...) {

handle_ioexception(s); /1 see8D.4.2.2
}

return s,
}

| usetheget() that readsinto a string because reading into a double and then converting to along
int could lead to loss of precision.

D.4.4 Dateand Time Input and Output

Unfortunately, the C++ standard library does not provide a proper date type. However, from the C
standard library, it inherits low-level facilities for dealing with dates and time intervals. These C
facilities are the basis for C++ sfacilities for dealing with time in a system-independent manner.

The following sections demonstrate how the presentation of date and time-of-day information
can be made locale sensitive. In addition, they provide an example of how a user-defined type
(Date) can fit into the framework provided by iostream (Chapter 21) and locale (8D.2). The
implementation of Date shows techniques that are useful for dealing with time if you don’t have a
Date type available.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.1 Clocksand Timers 905

D.4.4.1 Clocksand Timers

At the lowest level, most systems have a fine-grained timer. The standard library provides a func-
tion clock() that returns an implementation-defined arithmetic type clock _t. The result of
clock() can be calibrated by using the CLOCKS_PER_SEC macro. If you don't have accessto a
reliable timing utility, you might measure aloop like this:

int main(int argc, char* argv(]) // 86.1.7
{
int n=atoi(argv[1]); /1 §20.4.1

clock t t1 = clock();

if (t1==rclock t(-1)) { /1 clock _t(-1) means "clock() didn’'t work"
cerr << "sorry, no clock\n";
exit(1);

}

for (int i =0; i<n; i++) do_something(); // timingloop

clock _t t2 = clock();
if (t2==clock t(-1)) {
cerr << "sorry, clock overflom\n";
exit(2);
}
cout << " do_something() " << n<<" times took"
<< double(t2- t1) / CLOCKS PER SEC << " seconds'
<<" (' measurement granularity: " << CLOCKS PER _SEC << " of a second) \n";

The explicit conversion double(t2- t1) before dividing is necessary because clock t might be an
integer. Exactly when the clock() starts running is implementation defined; clock() is meant to
measure time intervals within a single run of a program. For values t1 and t2 returned by clock() ,
double(t2- t1) / CLOCKS PER SEC is the system’s best approximation of the time in seconds
between the two calls.

If clock() isn't provided for a processor or if atime interval was too long to measure, clock()
returnsclock t(-1).

The clock() function is meant to measure intervals from a fraction of a second to a few sec-
onds. For example, if clock tisa32-hit signed int and CLOCKS PER SEC is 1,000,000, we can
use clock() to measure from 0 to just over 2,000 seconds (about half an hour) in microseconds.

Please note that getting meaningful measurements of a program can be tricky. Other programs
running on a machine may severely affect the time used by a run, cache and pipelining effects are
difficult to predict, and algorithms may have surprising dependencies on data. If you try to time
something, make several runs and reject the results as flawed if the run times vary significantly.

To cope with longer time intervals and with calendar time, the standard library provides time t
for representing a point in time and a structure tm for separating a point in time into its conven-
tional parts:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

906 Locales Appendix D

typedef implementation_defined time t; /1 implementation-defined arithmetic type (84.1.1)
/1 capable of representing a period of time,
/1 often, a 32-bit integer

struct tm{
int tm_sec; /1 second of minute [0,61]; 60 and 61 to represent leap seconds
int tm_min; /1 minute of hour [0,59]

int tm_hour; // hour of day [0,23]
int tm_mday, // day of month[1,31]
int tm_mon; /1 month of year [0,11]; 0 means January (note: not [1:12])
int tm_year; /1 year since 1900; 0 means year 1900, and 102 means 2002
int tm_wday; // dayssince Sunday [0,6]; O means Sunday
int tm yday; // dayssince January 1[0,365]; 0 means January 1
int tm_isdst; // hours of daylight savings time
b

Note that the standard guarantees only that tm has the int members mentioned here. The standard
does not guarantee that the members appear in this order or that there are no other fields.

The time_t and tm types and the basic facilities for using them are presented in <ctime> and
<time. h>. For example:

clock t clock(); /1 number of clock ticks since the start of the program
time_t time(time_t* pt); /1 current calendar time
double difftime(time_t t2, time_t t1); /1 t2-t1in seconds
tm* localtime(const time_t* pt); /1 local time for the *pt
tm* gmtime(const time_t* pt); /1 Greenwich Mean Time (GMT) tm for *pt, or O
/1 (officially called Coordinated Universal Time, UTC)
time_t mktime(tm* ptm); /1 time_t for *ptm, or time_t(-1)
char* asctime(const tm* ptm); /1 C-style string representation for *ptm

/1 for example, "Sun Sep 16 01:03:52 1973\n"
char* ctime(const time_t* t) { return asctime(localtime(t)); }

Beware: both localtime() and gmtime() returnatm® to astatically allocated object; a subsequent
call of that function will change the value of that object. Either use such a return value immedi-
ately, or copy the tminto storage that you control. Similarly, asctime() returns a pointer to a stati-
cally alocated character array.

A tm can represent datesin arange of at least tens of thousands of years (about [-32000,32000]
for aminimally sized int). However, time_t is most often a (signed) 32-bit long int. Counting sec-
onds, this makes time t capable of representing a range just over 68 years on each side of a base
year. This base year is most commonly 1970, with the exact base time being 0:00 of January 1
GMT (UTC). If time t is a 32-bit signed integer, we'll run out of ‘‘time’ in 2038 unless we
upgradetime_t to alarger integer type, asis aready done on some systems.

The time_t mechanism is meant primarily for representing ‘‘near current time.”’ Thus, we
should not expect time_t to be able to represent dates outside the [1902,2038] range. Worse, not all
implementations of the functions dealing with time handle negative values in the same way. For
portability, a value that needs to be represented as both a tm and a time t should be in the

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.1 Clocksand Timers 907

[1970,2038] range. People who want to represent dates outside the 1970 to 2038 time frame must
devise some additional mechanism to do so.

One consequence of this is that mktime() can fail. If the argument for mktime() cannot be
represented asatime t, the error indicator time_t(- 1) isreturned.

If we have along-running program, we might timeiit like this;

int main(int argc, char* argv[]) // 86.1.7

{

time_t t1 = time(0);

do_a lot(argc, argv);

time_t t2 =time(0);

double d = difftime(t2, t1);

cout << "do_a_lot() took' << d<<" seconds\n";
}

If the argument to time() is not O, the resulting time is also assigned to the time t pointed to. If
the calendar time is not available (say, on a specialized processor), the value time t(-1) is
returned. We could cautiously try to find today’ s date like this:

int main()
{
time_t t;
if (time(&) ==time t(-1)) { // time_t(-1) means"‘time() didn't work’’
cerr << " Bad time\n";
exit(1);
}
tm* gt = gmtime(&t);
cout << gt- >tm_mon+1 <<’/ << gt- >tm _mday << "/~ << 1900+gt- >tm_year << endl;

D.4.4.2 A DateClass

As mentioned in 810.3, it is unlikely that a single Date type can serve al purposes. The uses of
date information dictate a variety of representations, and calendar information before the 19th cen-
tury is very dependent on historical vagaries. However, as an example, we could define a Date
type aong the lines from §10.3, using time_t as the implementation:

class Date{
public:
enum Month { jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec};

class Bad_date{};

Date(int dd, Month mm, int yy);
Date();

friend ostream& operator<<(ostream& s, const Date& d);

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

908 Locales Appendix D

/..
private:
time_t d; // standard date and time representation
b
Date: : Date(int dd, Month mm, int yy)
{
tm x={ 0};
if (dd<0| | 31<dd) throw Bad date(); // oversimplified: see §10.3.1
X. tm_mday = dd;
if (mm<jan || dec<mm) throw Bad_date();
X. tm_mon = mm- 1; /1 tm_monis zero based
X. tm_year = yy- 1900; /1 tm_year is 1900 based
d = mktime(&x);
}
Date: : Date()
d=time(0); /1 default Date: today
if (d==time_t(- 1)) throw Bad_date();
}

The task hereis to define local e-sensitive implementations for Date << and >>.

D.4.4.3 Dateand Time Output
Like num_put (8D.4.2), time_put provides put() functionsfor writing to buffers through iterators:

template <class Ch, class Out = ostreambuf_iterator<Ch> >
class std:: time_put: public locale: : facet {
public:
typedef Ch char_type;
typedef Out iter_type;
explicit time_put(size t r =0);
/1 puttinto s's stream buffer through b, using format fmt:
Out put(Out b, ios base& s, Ch fill, const tm* t,
const Ch* fmt_b, const Ch* fmt_e) const;

Out put(Out b, ios base&s, Ch fill, const tm* t, char fmt, char mod = 0) const
{ return do_put(b, s, fill, t, fmt, mod); }
static locale:: id id; // facet identifier object (8D.2, 8D.3, 8D.3.1)
protected:
“time_put();
virtual Out do_put(Out, ios base&, Ch, const tm*, char, char) const;
3

A cdl put(b, s, fill, t, fmt_b, fmt_e) places the date information from t into s's stream buffer
through b. Thefill character is used where needed for padding. The output format is specified by a
printf() -like format string [fmt_b, fmt_e) . The printf-like (§21.8) format is used to produce an

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.3 Dateand TimeOutput 909

actual output and may contain the following special-purpose format specifiers:

%a abbreviated weekday name (e.g., Sat)

%A full weekday name (e.g., Saturday)

%b abbreviated month name (e.g., Feb)

%B full month name (e.g., February)

%c dateandtime (e.g., Sat Feb 06 21:46:05 1999)

%d day of month[01,31] (e.g., 06)

%H 24-hour clock hour [00,23] (e.g., 21)

%l 12-hour clock hour [01,12] (e.g., 09)

%j day of year [001,366] (e.g., 037)

%m month of year [01,12] (e.g., 02)

%M minute of hour [00,59] (e.g., 48)

%p am./p.m.indicator for 12-hour clock (e.g., PM)

%S second of minute [00,61] (e.g., 40)

%U week of year [00,53] starting with Sunday (e.g., 05); the first Sunday starts week 1
%w day of week [0,6]; 0 means Sunday (e.g., 6)

%W week of year [00,53] starting with Monday (e.g., 05); the first Monday starts week 1
%x date(e.g., 02/06/99)

%X time(eg., 21:48:40)

%y year without century [00,99] (e.g., 99)

%Y year (e.g., 1999)

%Z timezoneindicator (e.g., EST) if thetime zoneis known

This long list of very specialized formatting rules could be used as an argument for the use of
extensible 1/0 systems. However, as with most specialized notations, it is adequate for its task and
often even convenient.

In addition to these formatting directives, most implementations support ‘‘modifiers,’” such as
an integer specifying afield width (821.8), 9d0X. Modifiers for the time-and-date formats are not
part of the C++ standard, but some platform standards, such as POSIX, require them. Conse-
guently, modifiers can be difficult to avoid even if their useisn’t perfectly portable.

The sprintf-like (§21.8) function strftime() from <ctime> or <time. h> produces output using
the time and date format directives:

size t strftime(char* s, size t max, const char* format, const tm* tmp);

This function places a maximum of max characters from * tmp and the format into * s according the
format. For example:

int main()
{
const int max = 20; // doppy: hope stritime() will never produce more than 20 characters
char buf[max];
time_t t=time(0);
strftime(buf, max, " %A\n", localtime(&t));
cout << buf;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

910 Locales Appendix D

On aWednesday, thiswill print Wednesday in the default classic() locale (§8D.2.3) and onsdag in
aDanish locale.

Characters that are not part of aformat specified, such as the newline in the example, are smply
copied into the first argument (s).

When put() identifies aformat character f (and optional modifier character m), it calls the vir-
tual do_put() to do the actual formatting: do_put(b, s, fill, t, f, m) .

A cal put(b, s, fill, t, f, m) isasimplified form of put(), where aformat character (f) and a
modifier character (m) are explicitly provided. Thus,

const char fmt[] =" 9%d0X";
put(b, s, fill, t, fmt, fmt+sizeof(fmt));

can be abbreviated to
put(b, s, fill, t, " X, 10);

If aformat contains multibyte characters, it must both begin and end in the default state (8D.4.6).
We can use put() to implement alocale-sensitive output operator for Date:

ostream& operator<<(ostream& s, const Date& d)

{
ostream: : sentry guard(s); /] see821.3.8
if (! guard) return s,
tm* tmp = localtime(&d. d);
try {
if (use_facet< time_put<char> >('s. getloc()) . put(s, s, s. fill(), tmp, " X") . failed())
S. setstate(ios_base: : failbit);
}
catch(...) {
handle_ioexception(s); /] see8D.4.2.2
}
return s
}

Since there is no standard Date type, there is no default layout for date I/0O. Here, | specified the
% format by passing the character “ X* as the format character. Because the % format is the
default for get_time() (8D.4.4.4), that is probably as close to a standard as one can get. See
8D.4.4.5 for an example of how to use alternative formats.

A _byname version (8D.4, §8D.4.1) of time_put is also provided:

template <class Ch, class Out = ostreambuf_iterator<Ch> >
class std:: time_put_byname: public time_put<Ch, Out>{ /* ..*/ };

D.4.4.4 Dateand Time Input

As ever, input is trickier than output. When we write code to output a value, we often have a
choice among different formats. In addition, when we write input code, we must deal with errors
and sometimes the possibility of several alternative formats.

The time_get facet implements input of time and date. The ideais that time_get of alocale can

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.4 Dateand Timelnput 911

read the times and dates produced by the locale's time_put. However, there are no standard date
and time classes, so a programmer can use a locale to produce output according to a variety of for-
mats. For example, the following representations could al be produced by using a single output
statement, using time_put (8D.4.4.5) from different locales:

January 15th 1999
Thursday 15th January 1999
15 Jan 1999AD

Thurs 15/ 1/ 99

The C++ standard encourages implementers of time_get to accept dates and time formats as speci-
fied by POSIX and other standards. The problem is that it is difficult to standardize the intent to
read dates and times in whatever format is conventional in agiven culture. It iswise to experiment
to see what agiven locale provides (8D.6[8]). If aformat isn't accepted, a programmer can provide
asuitable alternative time_get facet.
The standard time input facet, time_get, is derived from time_base:
struct std: : time_base {

enum dateorder {
no_order, // no order, possibly more elements (such as day of week)

dmy, /1 day before month before year
mdy, /1 month before day before year
ymd, /1 year before month before day
ydm /1 year before day before month

b
}s

An implementer can use this enumeration to simplify the parsing on date formats.
Like num_get, time_get accessesits buffer through a pair of input iterators:

template <class Ch, class In = istreambuf_iterator<Ch> >
class time_get: public locale: : facet, public time_base {
public:

typedef Ch char_type;

typedef In iter_type;

explicit time_get(size t r =0);
dateorder date order() const{ return do_date order(); }

/1 read[b,e) into d, using formatting rules froms, reporting errors by setting r:

In get_time(In b, In e, ios_base&s, ios base: : iostate& r, tm* d) const;

In get_date(In b, In e, ios_base&s, ios base: : iostate& r, tm* d) const;

In get_year(In b, In e, ios base& s, ios base: : iostate& r, tm* d) const;

In get_weekday(In b, In e, ios base& s, ios base: : iostate& r, tm* d) const;
In get_monthname(In b, In e ios base&s, ios base : iostate&r, tm* d) const;

static locale:: id id; // facet identifier object (8D.2, 8D.3, 8D.3.1)
protected:

" time_get();

/1 virtual ‘“*do_"" functions for public functions (see 8D.4.1)

}s

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

912 Locales Appendix D

The get_time() function callsdo_get_time() . The default get_time() reads time as produced by
the locale' s time_put: : put() , using the %X format (8D.4.4). Similarly, the get_date() function
cals do_get_date(). The default get date() reads a date as produced by the locale's
time_put: : put() , using the % format (8D.4.4).

Thus, the ssimplest input operator for Dates is something like this:

istream& operator>>(istream& s, Date& d)

{
istream: : sentry guard(s); /] see§21.3.8
if (! guard) return s;
ios_base: : iostate res=0;
tm x={ 0};
istreambuf_iterator<char, char_traits<char> > end;
try {
use_facet< time_get<char> >(s. getloc()) . get_date(s, end, s, res, &x);
if (res==0| | res==ios _base: : eofbit)
d = Date(x. tm_mday, Date: : Month(x. tm_mon+1), X. tm_year+1900);
else
S. setstate(res);
}
catch(...) {
handle_ioexception(s); /] see8D.4.2.2
}
return s
}

The call get_date(s, end, s, res, &x) relies on two implicit conversions from istream: As the first
argument, s is used to construct an istreambuf_iterator. As third argument, s is converted to the
istream base classios_base.
Thisinput operator will work correctly for datesin the range that can be represented by time _t.
A trivial test case would be:
int main()
try {
Date today;

cout << today << endl; /1 write using %x format
Date d(12, Date:: may, 1998);

cout << d << endl;
Date dd;
while (cin >> dd) cout << dd << endl; /1 read dates produced by %x format

catch (Date: : Bad_date) {
cout << " exit: bad date caught\n";
}

A _byname version (8D.4, 8D.4.1) of time_get is aso provided:

template <class Ch, class In = istreambuf_iterator<Ch> >
class std:: time_get_byname: public time_get<Ch, In>{ /* ..*/ };

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.4 Dateand Timelnput 913

D.4.45 A MoreFlexible Date Class

If you tried to use the Date class from 8D.4.4.2 with the I/O from §D.4.4.3 and 8D.4.4.4, you'd
soon find it restrictive:

[1] It can handle only dates that can be represented by a time_t; that typically means in the

[1970,2038] range.

[2] It accepts dates only in the standard format — whatever that might be.

[3] Itsreporting of input errorsis unacceptable.

[4] 1t supports only streams of char — not streams of arbitrary character types.
A more interesting and more useful input operator would accept a wider range of dates, recognize a
few common formats, and reliably report errors in a useful form. To do this, we must depart from
the time_t representation:

class Date{
public:
enum Month { jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec};

struct Bad_date {
const char* why;
Bad_date(const char* p) : why(p) { }
IS
Date(int dd, Month mm, int yy, int day of week =0);
Date();

void make_tm(tm* t) const; /1 placetmrepresentation of Datein *t
time_t make_time t() const; /1 return time_t representation of Date
int year() const{ return vy, }

Month month() const { return m; }

int day() const{ return d; }

/..
private:
char d;
Month m;
int y;
s

For simplicity, | reverted tothe (d, m, y) representation (810.2).
The constructor might be defined like this:

Date: : Date(int dd, Month mm, int yy, int day of week)
{ d(dd), m(mm), y(yy)

if (d==0 && m==Month(0) && y==0) return; /1 Date(0,0,0) isthe "null date"
if (mm<jan || dec<mm) throw Bad_date(" bad month");

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

914 Locales Appendix D

if (dd<1|| 31<dd) // oversimplified; see §10.3.1
throw Bad_date(" bad day of month");
if (day_of_week && day_in_week(yy, mm, dd) ! =day_of_week)
throw Bad_date(" bad day of week");
}

Date:: Date() : d(0), m(0), y(0) { } // a"null date"

The day_in_week() calculation is nontrivial and immaterial to the locale mechanisms, so | have
left it out. If you need one, your system will have one somewhere.
Comparison operations are always useful for types such as Date:

bool operator==(const Date& x, const Date& y)

{
return x. year() ==y. year() && x. month() ==y. month() && x. day() ==y. day();
}
bool operator! =(const Date& x, const Date& y)
{
return! (x==y);
}

Having departed from the standard tm and time_t formats, we need conversion functions to cooper-
ate with software that expects those types:

void Date:: make_tm(tm* p) const /1 put dateinto *p

{
tm x={ 0};
* p = X,
p- >tm_year = y- 1900;
p- >tm_mday = d;
p->tm_mon =m- 1,

}

time_t Date:: make time_t() const

if (y<1970| | 2038<y) /1 oversimplified
throw Bad_date(" date out of range for time_t");
tm x;
make_tm(&x);
return mktime(&x);

D.4.4.6 Specifying a Date For mat

C++ doesn't define a standard output format for dates (%x is as close as we get; 8D.4.4.3). How-
ever, even if astandard format existed, we would probably want to be able to use aternatives. This
could be done by providing a*‘default format’’ and away of changing it. For example:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.6 Specifying a Date For mat

class Date format {

static char fmt[]; /1 default format
const char* curr; /1 current format
const char* curr_end;

public:

Date_format() : curr(fmt), curr_end(fmt+strlen(fmt)) { }

const char* begin() const{ return curr; }
const char* end() const{ return curr_end; }

void set(const char* p, const char* q) { curr=p; curr_end=q; }
void set(const char* p) { curr=p; curr_end=curr+strlen(p); }

static const char* default_fmt() { return fmt; }
b

const char Date format:: fmi[] =" %A, ¥B %, %" ; // eg., Friday, February 5, 1999

Date format date_fmt;

915

To be able to use that strftime() format (8D.4.4.3), | have refrained from parameterizing the
Date format class on the character type used. Thisimplies that this solution alows only date nota-
tions for which the format can be expressed as a char[]. | also used a global format object
(date_fmt) to provide a default Date format. Since the value of date fmt can be changed, this pro-
vides a crude way of controlling Date formatting, similar to the way global() (8D.2.3) can be

used to control formatting.

A more general solution is to add Date in and Date out facets to control reading and writing

from astream. That approach is presented in 8D.4.4.7.
Given Date_format, Date: : operator<<() can bewritten likethis:

template<class Ch, class Tr>
basic_ostream<Ch, Tr>& operator<<(basic_ostream<Ch, Tr>& s, const Date& d)
/1 write according to user-specified format

{
typename basic_ostream<Ch, Tr>:: sentry guard(s); // see821.3.8
if (! guard) return s;
tm t;
d. make_tm(&t);
try {
const time_put<Ch>& f = use_facet< time_put<Ch> >(s. getloc());
if (f. put(s, s, s. fill(), &, date_fmt. begin(), date fmt. end()) . failed())
S. setstate(ios_base: : failbit);
}
catch(...) {
handle_ioexception(s); /] see8D.4.2.2
}
return s,
}

| could have used has_facet to verify that s'slocale had a time_put<Ch> facet. However, here it

seemed simpler to handle that problem by catching any exception thrown by use_facet.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.

Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

916 Locales Appendix D

Hereisasimple test program that controls the output format through date fmt:
int main()
try {

while (cin>>dd && dd ! = Date()) cout << dd << endl; /1 write using default date_fmt
date fmt. set(" %/ %n %");
while (cin>>dd & dd! = Date()) cout << dd << endl; /1 write using "%Y/%m/%d"

catch (Date:: Bad_date e) {
cout << "bad date caught: " << e why << endl;
}

D.4.4.7 A Date Input Facet

Asever, input is a bit more difficult than output. However, because the interface to low-level input
isfixed by get_date() and because the operator>>() defined for Date in 8D.4.4.4 didn’t directly
access the representation of a Date, we could use that operator>>() unchanged. Hereisatempla-
tized version to match the operator<<() from 8§D.4.4.6:

template<class Ch, class Tr>
istream<Ch, Tr>& operator>>(istream<Ch, Tr>& s, Date& d)

{
typename istream<Ch, Tr>:: sentry guard(s);
if (guard) try {
ios_base: : iostate res=0;
tm x={ 0};
istreambuf_iterator<Ch, Tr> end;

use_facet< time_get<Ch> >(s. getloc()) . get_date(s, end, s, res, &x);

if (res==0| | res==ios_base: : eofbit)

d = Date(x. tm_mday, Date: : Month(x. tm_mon+1), x. tm_year+1900, x. tm_wday);
else

S. setstate(res);

}
catch(...) {

handle_ioexception(s); /1 see8D.4.2.2
}

return s;
}

This Date input operator calls get_date() from the istream’s time_get facet (8D.4.4.4). There-
fore, we can provide a different and more flexible form of input by defining a new facet derived
from time_get:

template<class Ch, class In = istreambuf_iterator<Ch> >
class Date in: public std:: time_get<Ch, In> {
public:

Date_in(size t r=0) : std:: time_get<Ch>(r) { }

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.7 A Datelnput Facet 917

protected:
In do_get_date(In b, In e, ios base& s, ios base: : iostate& r, tm* tmp) const;

private:

enum Vtype{ novalue, unknown, dayofweek, month};

In getval(In b, In e, ios _base& s, ios _base: : iostate& r, int* v, Vtype* res) const;
b

The getval() needs to read a year, a month, a day of the month, and optionally a day of the week
and compose the result into atm.

The names of the months and the names of the days of the week are locale specific. Conse-
guently, we can't mention them directly in our input function. Instead, we recognize months and
days by caling the functions that time get provides for that: get_monthname() and
get_weekday() (8D.4.4.4).

The year, the day of the month, and possibly the month are represented as integers. Unfortu-
nately, a number does not indicate whether it denotes a day or a month, or whatever. For example,
7 could denote July, day 7 of a month, or even the year 2007. The rea purpose of time_get's
date order() isto resolve such ambiguities.

The strategy of Date in is to read values, classify them, and then use date order() to see
whether (or how) the values entered make sense. The private getval() function does the actual
reading from the stream buffer and theinitial classification:

template<class Ch, class In>
In Date in<Ch, In>:: getval(In b, In e,
ios_base& s, ios_base: : iostate& r, int* v, Vtype* res) const
/1 read part of Date: number, day_of week, or month. Skip whitespace and punctuation.

const ctype<Ch>& ct = use_facet< ctype<Ch> >(s. getloc()); // ctypeisdefinedin 8D.4.5
Ch c;

*res = novalue; // no value found

for (;;) {// skip whitespace and punctuation
if (b==¢€) return e

c=*b;
if (! (ct. is(ctype base: : space,) || ct. is(ctype_base:: punct, ¢))) break;
++b;

}

if (ct. is(ctype base: : digit,c)) { // readinteger without regard for numpunct
int i=0;

do{ // turndigit fromarbitrary character set into decimal value:
static char const digits[] =" 0123456789" ;
i =i*10 + find(digits, digits+10, ct. narrow(c, ~ ")) - digits;
C=*++b;

} while (ct. is(ctype_base: : digit, c));

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

918 Locales Appendix D

*v=i;
* res = unknown; /1 aninteger, but we don’t know what it represents
return b;

}

if (ct. is(ctype base: : alpha, c)) { // look for name of month or day of week
basic_string<Ch> str;
while (ct. is(ctype_base:: alpha, ¢)) { /1 read charactersinto string
str +=¢;
if (++b==¢) break;
c=*b;

}

tm t;

basic_stringstream<Ch> ss(str);

typedef istreambuf_iterator<Ch> 9; /1 iterator type for ss' buffer
get_monthname(ss. rdbuf(), SI(), s, r, &); // read fromin-memory stream buffer

if ((r&(ios_base:: badbit| ios_base: : failbit)) ==0) {
*y=t. tm_mon;
*res = month;
return b;

}

r=0; /1 clear state before trying to read a second time
get_weekday(ss. rdbuf(), SI(), s, r, &); // read fromin-memory stream buffer

if ((r&(ios_base:: badbit| ios_base: : failbit)) ==0) {
*v =t. tm_wday;
*res = dayofweek;

return b;
}
}
r | =ios_base: : failbit;
return b;

}

The tricky part here is to distinguish months from weekdays. We read through input iterators, so
we cannot read [b, €) twice, looking first for a month and then for a day. On the other hand, we
cannot look at one character at a time and decide, because only get monthname() and
get_weekday() know which character sequences make up the names of the months and the names
of the days of the week in a given locale. The solution | chose was to read strings of aphabetic
characters into a string, make a stringstream from that string, and then repeatedly read from that
stream’ s streambuf.

The error recording uses the state bits, such as ios_base: : badbit, directly. This is necessary
because the more convenient functions for manipulating stream state, such as clear() and set-
state() , are defined in basic_ios rather than in its base ios_base (821.3.3). If necessary, the >>
operator then uses the error results reported by get_date() to reset the state of the input stream.

Given getval() , we can read values first and then try to see whether they make sense later. The
date order() canbecrucial:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.4.7 A Datelnput Facet 919

template<class Ch, class In>
In Date in<Ch, In>:: do_get_date(In b, In e, ios base& s, ios base: : iostate& r, tm* tmp) const
/1 optional day of week followed by ymd, dmy, mdy, or ydm
{
int val[3]; /1 for day, month, and year valuesin some order
Vtype reg[3] ={ novalue}; /1 for value classifications

for (int i=0; bl =e&&i<3; ++i) { // read day, month, and year
b=getval(b, e s, r, &val[i], &eg i]);

if (r) return b; /1 oops: error

if (req i] ==novalue) { /1 couldn’t complete date
r | =ios_base: : badbit;
return b;

}
if (reg[i] ==dayofweek) {
tmp- >tm_wday = val[i];
- -i; /1 oops. not a day, month, or year

}
}
time_base: : dateorder order = date order(); /1 now try to make sense of the values read
if (res[0] == month) { /1 mdy or error
/..
}
else if (req] 1] == month) { /1 dmy or ymd or error
tmp- >tm_mon = val[1];
switch (order) {
case dmy:
tmp- >tm_mday = val[0] ;
tmp- >tm_year = val[2];
break;
case ymd:
tmp- >tm_year = val[0] ;
tmp- >tm_mday = val[2] ;
break;
default:
r | = ios_base: : badbit;
return b;
}
}
else if (res] 2] == month) { /1 ydmor error
/..
}
ese{ /1 rely on dateorder or error
Il ..
}
tmp- >tm_year - = 1900; // adjust base year to suit tm convention
return b;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

920 Locales Appendix D

| have omitted bhits of code that do not add to the understanding of locales, dates, or the handling of
input. Writing better and more general date input functions are left as exercises (8D.6[9-10]).
Hereisasimple test program:

int main()

try {
cin. imbue(loc(locale(), new Date in)); // read Datesusing Date in
while (cin>>dd & dd ! = Date()) cout << dd << endl;

}
catch (Date:: Bad_date e) {

cout << "bad date caught: " << e why << endl;
}

Note that do_get date() will accept meaningless dates, such as

Thursday October 7, 1998
and

1999/ Feb/ 31

The checks for consistency of the year, month, day, and optional day of the week are done in
Date's constructor. It is the Date class' job to know what constitutes a correct date, and it is not
necessary for Date _in to share that knowledge.

It would be possible to have getval() or do_get date() guess about the meaning of numeric
values. For example,

12 May 1922

is clearly not the day 1922 of year 12. That is, we could ‘‘guess’ that a numeric value that
couldn’t be a day of the specified month must be ayear. Such ‘*guessing’’ can be useful in specific
constrained context. However, it in not agood ideain more general contexts. For example,

12 May 15

could be a date in the year 12, 15, 1912, 1915, 2012, or 2015. Sometimes, a better approach is to
augment the notation with clues that disambiguate years and days. For example, 1st and 15th are
clearly days of amonth. Similarly, 751BC and 1453AD are explicitly identified as years.

D.4.5 Character Classification

When reading characters from input, it is often necessary to classify them to make sense of what is
being read. For example, to read a number, an input routine needs to know which letters are digits.
Similarly, 86.1.2 showed a use of standard character classification functions for parsing input.
Naturally, classification of characters depends on the alphabet used. Consequently, a facet
ctypeis provided to represent character classification in alocale.
The character classes as described by an enumeration called mask:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.5

class std:: ctype_base {
public:
enum mask {
space =1,
print = 1<<1,
entrl = 1<<2,
upper = 1<<3,
lower = 1<<4,
alpha = 1<<S5,
digit = 1<<6,
punct = 1<<7,
xdigit = 1<<8,
alnum=alpha| digit,
graph=alnum| punct
s
s

11
11
11
11
/11
/11
11
11
/11
11
/11

Character Classification

the actual values are implementation defined
whitespace (in "C" locale: ' ’, "\n’, ’\t’, ...)
printing characters

control characters

upper case characters

lower case characters

alphabetic characters

decimal digits

punctuation characters

hexadecimal digits

alphanumeric characters

921

This mask doesn’t depend on a particular character type. Consequently, this enumeration is placed

in a (non-template) base class.

Clearly, mask reflects the traditional C and C++ classification (820.4.1). However, for different
character sets, different character values fall into different classes. For example, for the ASCII
character set, the integer value 125 represents the character “ } ~, which is a punctuation character
(punct). However, in the Danish national character set, 125 represents the vowel “ &, whichin a
Danish locale must be classified as an alpha.

The classification is called a‘*mask’’ because the traditional efficient implementation of char-
acter classification for small character setsis atable in which each entry holds bits representing the

classification. For example:

table[“a’] == lower| alpha| xdigit

table] 1"] == digit
table] © "] == space

Given that implementation, table[¢] &mis nonzero if the character ¢ isan mand O otherwise.

The ctype facet is defined like this:

template <class Ch>

class std:: ctype: public locale:: facet, public ctype base {

public:
typedef Ch char_type;

explicit ctype(size t r=0);
bool is(mask m, Ch c) const; // is"c"an"m"?

/1 place classification for each Chin [b:€) into v:
const Ch* is(const Ch* b, const Ch* e, mask* v) const;

const Ch* scan_is(mask m, const Ch* b, const Ch* €) const; // findanm
const Ch* scan_not(mask m, const Ch* b, const Ch* €) const; // find anon-m

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

922 Locales Appendix D

Ch toupper(Ch c¢) const;

const Ch* toupper(Ch* b, const Ch* €) const; // convert[b:e)
Ch tolower(Ch c) const;

const Ch* tolower(Ch* b, const Ch* €) const;

Ch widen(char c) const;

const char* widen(const char* b, const char* e, Ch* b2) const;

char narrow(Ch c, char def) const;

const Ch* narrow(const Ch* b, const Ch* e, char def, char* b2) const;

static locale: : id id; // facet identifier object (8D.2, 8D.3, 8D.3.1)

protected:
" ctype();

/1 virtual **do_"" functions for public functions (see 8D.4.1)
b
A call is(m, ¢) testswhether the character ¢ belongsto the classification m. For example:
int count_spaces(const string& s, const locale& loc)

{
const ctype<char>& ct = use facet< ctype<char> >(loc);
int i=0;
for(string: : const_iterator p=s. begin(); p!=s.end(); ++p)
if (ct. is(ctype_base: : space, *p)) ++i; /1 whitespace as defined by ct
return i;
}

Note that it is also possibleto useis() to check whether a character belongs to one of a number of
classifications. For example:

ct. is(ctype_base: : space| ctype_base: : punct, c); // isc whitespace or punctuation in ct?

A cal is(b, e, v) determinesthe classification of each character in[b, €) and placesit in the cor-
responding positioninthe array v.

A cal scan_is(m, b, € returns a pointer to the first character in [b, €) that isan m. If no
character is classified as an m, e isreturned. As ever for standard facets, the public member func-
tionisimplemented by acall toits‘*do_ '’ virtual function. A simple implementation might be:

template <class Ch>
const Ch* std:: ctype<Ch>:: do_scan_is(mask m, const Ch* b, const Ch* €) const

while (b! =e && ! is(m, *b)) ++b;
return b;
}

A cdl scan_not(m, b, € returns a pointer to the first character in [b, €) that isnot an m. If all
characters are classified as m, e isreturned.

A call toupper() returns the uppercase version of ¢ if such aversion exists in the character set
used and c itself otherwise.

A call toupper(b, €) convertseach character intherange[b, €) to uppercase and returnse. A
simple implementation might be:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.5 Character Classification 923

template <class Ch>
const Ch* std:: ctype<Ch>:: to_upper(Ch* b, const Ch*)

for (; bl =e; ++b) *b = toupper(*b);
return e

}

Thetolower() functionsare similar to toupper() except that they convert to lowercase.

A call widen(c¢) transforms the character ¢ into its corresponding Ch value. If Ch's character
set provides several characters corresponding to ¢, the standard specifies that ‘‘ the simplest reason-
able transformation’’ be used. For example,

weout << use_facet< ctype<wchar_t> >(wcout. getloc()) . widen(” €);

will output areasonable equivalent to the character ein weout’slocale.
Trangation between unrelated character representations, such as ASCII and EBCDIC, can aso
be done by using widen() . For example, assume that an ebcdic locale exists:

char EBCDIC_e = use_facet< ctype<char> >(ebcdic) . widen(” €');

A cal widen(b, e, v) takeseach character intherange[b, €) and places awidened version in the
corresponding position in the array v.

A call narrow(ch, def) produces a char value corresponding to the character ch from the Ch
type. Again, ‘‘the simplest reasonable transformation’’ is to be used. If no such corresponding
char exist, def isreturned.

A call narrow(b, e, def, v) takes each character in the range [b, €) and places a narrowed
version in the corresponding position in the array v.

The general ideais that narrow() convertsfrom alarger character set to a smaller one and that
widen() performs the inverse operation. For a character ¢ from the smaller character set, we
expect:

¢ == narrow(widen(c), 0) // not guaranteed

Thisistrue provided that the character represented by ¢ has only one representation in *‘the smaller
character set.”” However, that is not guaranteed. If the characters represented by a char are not a
subset of those represented by the larger character set (Ch), we should expect anomalies and poten-
tial problemswith code treating characters generically.

Similarly, for a character ch from the larger character set, we might expect:

widen(narrow(ch, def)) ==ch || widen(narrow(ch, def)) == widen(def) // not guaranteed

However, even though this is often the case, it cannot be guaranteed for a character that is repre-
sented by several values in the larger character set but only once in the smaller character set. For
example, a digit, such as 7, often has several separate representations in a large character set. The
reason for that is typically that a large character set has several conventional character sets as sub-
sets and that the characters from the smaller sets are replicated for ease of conversion.

For every character in the basic source character set (8C.3.3), it is guaranteed that

widen(narrow(ch_lit, 0)) == ch_lit

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

924 Locales Appendix D

For example:
widen(narrow(” X, 0)) =="X

The narrow() and widen() functions respect character classifications wherever possible. For
example, if is(alpha, c) , then is(alpha, narrow(c, “a)) and is(alpha, widen(c)) wherever
alphaisavalid mask for the locale used.

A magjor reason for using a ctype facet in general and for using narrow() and widen() func-
tionsin particular is to be able to write code that does I/O and string manipulation for any character
set; that is, to make such code generic with respect to character sets. This implies that iostream
implementations depend critically on these facilities. By relying on <iostream> and <string>, a
user can avoid most direct uses of the ctype facet.

A _byname version (§8D.4, 8D.4.1) of ctype is provided:

template <class Ch> class std:: ctype_byname: public ctype<Ch>{ /* ...*/ };

D.4.5.1 Convenience I nterfaces

The most common use of the ctype facet is to inquire whether a character belongs to a given classi-
fication. Consequently, a set of functionsis provided for that:

template <class Ch> bool isspace(Ch c, const locale&loc);
template <class Ch> bool isprint(Ch ¢, const locale& loc);

template <class Ch> bool iscntrl(Ch ¢, const locale& loc);

template <class Ch> bool isupper(Ch ¢, const locale& loc);
template <class Ch> bool islower(Ch c, const locale& loc);
template <class Ch> bool isalpha(Ch c, const locale& loc);
template <class Ch> bool isdigit(Ch ¢, const locale& loc);

template <class Ch> bool ispunct(Ch ¢, const locale& loc);
template <class Ch> bool isxdigit(Ch ¢, const locale&loc);
template <class Ch> bool isalnum(Ch c, const locale& loc);
template <class Ch> bool isgraph(Ch c, const locale&loc);

These functions are trivially implemented by using use_facet. For example:

template <class Ch>
inline bool isspace(Ch c, const locale& loc)
{

}

The one-argument versions of these functions, presented in §20.4.2, are simply these functions for
the current C global locale (not the global C++ locale, locale()). Except for the rare casesin which
the C global locale and the C++ global locale differ (8D.2.3), we can think of a one-argument ver-
sion as the two-argument version applied to locale() . For example:

return use_facet< ctype<Ch> >(loc) . is(space, ¢);

inline int isspace(int i)
{

}

return isspace(i, locale()); /1 almost

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.5.1 Convenience Interfaces 925

D.4.6 Character Code Conversion

Sometimes, the representation of characters stored in a file differs from the desired representation
of those same characters in main memory. For example, Japanese characters are often stored in
files in which indicators (*‘shifts’’) tell to which of the four common character sets (kanji, kata-
kana, hiragana, and romaji) a given sequence of characters belongs. Thisis abit unwieldy because
the meaning of each byte depends on its ‘‘ shift state,’”’ but it can save memory because only a kanji
requires more than one byte for its representation. In main memory, these characters are easier to
mani pulate when represented in a multi-byte character set where every character has the same size.
Such characters (for example, Unicode characters) are typically placed in wide characters
(wchar_t; 84.3). Consequently, the codecwvt facet provides a mechanism for converting characters
from one representation to another as they are read or written. For example:

Disk representation: JSs

1/0 conversions controlled by codecvt

Main memory representation: Unicode

This code-conversion mechanism is general enough to provide arbitrary conversions of character
representations. It allows us to write a program to use a suitable internal character representation
(stored in char, wchar _t, or whatever) and to then accept a variety of input character stream repre-
sentations by adjusting the locale used by iostreams. The alternative would be to modify the pro-
gram itself or to convert input and output files from/to a variety of formats.

The codecvt facet provides conversion between different character sets when a character is
moved between a stream buffer and external storage:

class std:: codecvt_base {
public:

enum result { ok, partial, error, noconv}; /1 result indicators
}s

template <class I, class E, class State>
class std:: codecvt : public locale: : facet, public codecvt_base {
public:

typedef | intern_type;

typedef E extern_type;

typedef State state type;

explicit codecvt(size t r = 0);

result in(Sate&, const E* from, const E* from_end, const E* & from next, // read
I* to, I* to_end, I*&to_next) const;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

926 Locales Appendix D

result out(State&, const I* from, const I* from_end, const I*&from next, // write
E* to, E* to_end, E*&to_next) const;

result unshift(State&, E* to, E* to_end, E*&to_next) const; // end character sequence

int encoding() const throw(); /1 characterize basic encoding properties
bool always noconv() const throw(); /1 can we do I/O without code translation?

int length(const State&, const E* from, const E* from_end, size t max) const;
int max_length() const throw(); /1 maximum possible length()

static locale:: id id; // facetidentifier object (8D.2, 8D.3, 8D.3.1)

protected:
~ codecvt();

/1 virtual ‘“do_"" functions for public functions (see 8D.4.1)

}s

A codecvt facet is used by basic_filebuf (§21.5) to read or write characters. A basic_filebuf
obtains this facet from the stream’ slocale (8§21.7.1).

The Sate template argument is the type used to hold the shift state of the stream being con-
verted. State can also be used to identify different conversions by specifying a specialization. The
latter is useful because characters of a variety of character encodings (character sets) can be stored
in objects of the same type. For example:

class JiSstate{ /* ..*/ };

p = new codecvt<wchar_t, char, mbstate t>; /] standard char to wide char
g = new codecvt<wchar_t, char, JlSstate>; /1 JISto wide char

Without the different State arguments, there would be no way for the facet to know which encoding
to assume for the stream of chars. The mbstate t type from <cwchar> or <wchar. h> identifies
the system’ s standard conversion between char and wchar t.

A new codecvt can be aso created as a derived class and identified by name. For example:

class JiScvt : public codecvt<wchar_t, char, mbstate t>{ /* ...*/ };

A call in(s, from, from_end, from_next, to, to_end, to_next) reads each character in the range
[from, from_end) and tries to convert it. If a character is converted, in() writes its converted
form to the corresponding position in the [to, to_end) range; if not, in() stops at that point.
Upon return, in() stores the position one-beyond-the-last character read in from_next and the posi-
tion one-beyond-the-last character written in to_next. The result value returned by in() indicates
how much work was done;

ok: all charactersinthe[from, from_end) range converted
partial: not al charactersin the [from, from_end) range were converted
error: in() encountered acharacter it couldn’t convert

noconv: no conversion was needed
Note that a partial conversion is not necessarily an error. Possibly more characters have to be read
before a multibyte character is complete and can be written, or maybe the output buffer has to be
emptied to make room for more characters.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.6 Character Code Conversion 927

The s argument of type State indicates the state of the input character sequence at the start of
the call of in(). Thisis significant when the external character representation uses shift states.
Note that sis a (non-const) reference argument: At the end of the call, s holds the state of shift state
of the input sequence. This allows a programmer to deal with partial conversions and to convert a
long sequence using several callstoin() .

A cal out(s, from, from _end, from next, to, to_end, to_next) converts [from, from_end)
from the internal to the external representation in the same way thein() converts from the external
to the internal representation.

A character stream must start and end in a‘‘neutral’’ (unshifted) state. Typicaly, that state is
State() . A cal unshift(s, to, to_end, to_next) looks at s and places charactersin [to, to_end)
as needed to bring a sequence of characters back to that unshifted state. The result of unshift()
and the use of to_next are done just like out() .

A call length(s, from, from_end, max) returns the number of charactersthat in() could con-
vert from [from, from_end) .

A call encoding() returns

—1 if the encoding of the external character set uses state (for example, uses shift and unshift
character sequences)

0 if the encoding uses varying number of bytes to represent individual characters (for exam-
ple, a character representation might use a hit in a byte to indicate whether one or two
bytes are used to represents that character)

n if every character of the external character representation is n bytes

A call always noconv() returnstrue if no conversion is required between the internal and the
external character sets and false otherwise. Clearly, always_noconv() ==true opens the possibil-
ity for the implementation to provide the maximally efficient implementation that ssmply doesn’t
invoke the conversion functions.

A cal max_length() returns the maximum value that length() can return for a valid set of
arguments.

The simplest code conversion that | can think of is one that converts input to uppercase. Thus,
thisis about as simple as a codecvt can be and still perform a service:

class Cvt_to_upper : public codecvt<char, char, mbstate t> { /1 convert to uppercase
explicit Cvt_to _upper(size t r=0) : codecvt(r) { }

protected:
/1 read external representation write internal representation:
result do_in(State& s, const char* from, const char* from_end, const char* & from_next,
char* to, char* to_end, char*&to_next) const;

/1 read internal representation write external representation:

result do_out(State& s, const char* from, const char* from_end, const char* & from_next,
char* to, char* to_end, char* &to_next) const

{

return codecvt<char, char, mbstate t>:: do_out
(s, from, from_end, from_next, to, to_end, to_next);

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

928 Locales Appendix D

result do_unshift(Sate&, E* to, E* to_end, E*&to_next) const{ return ok; }

int do_encoding() const throw() { return 1; }
bool do_always noconv() const throw() { return false; }

int do_length(const Sate&, const E* from, const E* from_end, size t max) const;
int do_max_length() const throw(); /1 maximum possible length()

}s

codecvt<char, char, mbstate t>:: result
Cvt_to_upper:: do_in(State& s, const char* from, const char* from_end,
const char* & from_next, char* to, char* to_end, char*&to_next) const

{
/1 ...8D.6[16] ...
}
int main() /1 trivial test
{
locale ulocale(locale(), new Cvt_to_upper);
cin. imbue(ulocale);
char ch;
while (cin>>ch) cout << ch;
}

A _byname version (8D.4, 8D.4.1) of codecvt is provided:

template <class I, class E, class State>
class std:: codecvt_byname: public codecvt<l, E, State>{ /* ...*/ };

D.4.7 Messages

Naturally, most end users prefer to use their native language to interact with a program. However,
we cannot provide a standard mechanism for expressing locale-specific genera interactions.
Instead, the library provides a simple mechanism for keeping a locale-specific set of strings from
which a programmer can compose simple messages. In essence, messages implements a trivial
read-only database:

class std:: messages base {
public:

typedef int catalog; // catalogidentifier type
s

template <class Ch>
class std:: messages: public locale:: facet, public messages base {
public:

typedef Ch char_type;

typedef basic_string<Ch> string_type;

explicit messages(size t r =0);

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.7 Messages 929

catalog open(const basic_string<char>& fn, const locale&) const;
string_type get(catalog c, int set, int msgid, const string_type& d) const;
void close(catalog c) const;

static locale:: id id; // facet identifier object (8D.2, 8D.3, 8D.3.1)

protected:
" messages() ;
/1 virtual ‘*do_"’ functionsfor public functions (see §D.4.1)
b
A call open(s, loc) opensa‘‘catalog’ of messages called s for the locale loc. A catalog is a set
of strings organized in an implementation-specific way and accessed through the
messages: : get() function. A negative value is returned if no catalog named s can be opened. A
catalog must be opened before the first use of get() .
A call close(cat) closes the catalog identified by cat and frees al resources associated with
that catalog.
A call get(cat, set, id, "foo") looks for a message identified by (set, id) in the catalog cat.
If astring is found, get() returns that string; otherwise, get() returns the default string (here,
string(" foo")).
Here is an example of a messages facet for an implementation in which a message catalog is a
vector of setsof ‘‘messages’ and a'‘message’’ isastring:

struct Set {
vector<string> msgs;

b
struct Cat {
vector<Set> sets;
s
class My_messages: public messages<char> {
vector<Cat>& catalogs;
public:
explicit My_messages(size t = 0) : catalogs(* new vector<Cat>) { }
catalog do_open(const string& s, const locale& loc) const; /1 opencatalogs
string do_get(catalog c, int s, int m, const string&) const; // get message (s,m)inc
void do_close(catalog cat) const
if (catalogs. size() <=cat) catalogs. erase(catalogs. begin() +cat);
}
~ My_messages() { delete &catalogs; }
s

All messages’ member functions are const, so the catalog data structure (the vector<Set>) is stored
outside the facet.

A message is selected by specifying a catalog, a set within that catalog, and a message string
within that set. A string is supplied as an argument, to be used as a default result in case no mes-
sage isfound in the catal og:

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

930 Locales Appendix D

string My_messages: : do_get(catalog cat, int set, int msg, const string& def) const
{

if (catalogs. size() <=cat) return def;

Cat& c = catalogq] cat] ;

if (c. sets. size() <=set) return def;

Set& s = c. setq| set];

if (s. msgs. size() <=msg) return def;

return s. msgs] msg];
}

Opening a catalog involves reading a textual representation from disk into a Cat structure. Here, |
chose arepresentation that istrivial to read. A set is delimited by <<< and >>>, and each message
isaline of text:

messages<char>: : catalog My_messages: : do_open(const string& n, const locale& loc) const
{

string nn=n+ locale() . name();

ifstream f(nn. c_str());

if (1) return- 1;

catalogs. push_back(Cat()); /1 make in-core catalog
Caté& c = catalogs. back();

string s;

while (f>>s && s==" <<<") { /1 read Set

c. sets. push_back(Set());
Set& ss = c. sets. back();
while (getline(f, s) && s!=">>>") ss. msgs. push_back(s); /1 read message
}
return catalogs. size() - 1;
}

Hereisatrivia use:
int main()

if (! has_facet< My_messages >(locale())) {
cerr << " no messages facet found in" << locale(). name() << \n";
exit(1);

}

const messages<char>& m = use_facet< My_messages >(locale());
extern string message_directory; /1 where | keep my messages
int cat = m. open(message directory, locale());
if (cat<0) {

cerr << " no catalog found\n";

exit(1);
}

cout << m. get(cat, 0, O, "Missed again! ") << endl;
cout << m. get(cat, 1, 2, "Missed again' ") << endl;

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.4.7 M essages

cout << m. get(cat, 1, 3, " Missed again' ") << endl;
cout << m. get(cat, 3, 0, "Missed again' ") << endl;
}

If the catalog is

<<<
hello
goodbye
>>>
<<<

yes

no
maybe
>>>

this program prints
hello
maybe

Missed again!
Missed again!

D.4.7.1 Using Messages from Other Facets

931

In addition to being a repository for local e-dependent strings used to communicate with users, mes-
sages can be used to hold strings for other facets. For example, the Season_io facet (8D.3.2) could

have been written like this:

class Season_io: public locale: : facet {
const messages<char>& m; /1 message directory
int cat; /1 message catalog
public:
class Missing_messages{ };
Season_io(int i = 0)
: locale: : facet(i),
m(use_facet<Season_messages>(locale())),
cat(m. open(message_directory, locale()))
{ if (cat<0) throw Missing_messages(); }

“Season_io() { } /1 to make it possible to destroy Season _io objects (8D.3)
const string& to_str(Season x) const; /1 string representation of x

bool from str(const string&s, Season& x) const; // place Season corresponding to sin x

static locale:: id id; // facet identifier object (8D.2, 8D.3, 8D.3.1)
IS
locale: : id Season_io:: id; // definetheidentifier object

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.

Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

932 Locales Appendix D

const string& Season_io: : to_str(Season x) const

{
return m- >get(cat, X, " no- such- season");
}
bool Season_io:: from _str(const string& s, Season& x) const
{
for (int i = Season:: spring; i<=Season:: winter; i++)
if (m- >get(cat, i, " no- such- season") ==9) {
X = Season(i);
return true
}
return false;
}

This messages-based solution differs from the original solution (8D.3.2) in that the implementer of
a set of Season strings for a new locale needs to be able to add them to a messages directory. This
is easy for someone adding a new locale to an execution environment. However, since messages
provides only a read-only interface, adding a new set of season names may be beyond the scope of
an application programmer.

A _byname version (8D.4, 8D.4.1) of messages is provided:

template <class Ch>
class std:: messages byname: public messages<Ch>{ /* ...*/ };

D.5 Advice

[1] Expect that every nontrivial program or system that interacts directly with people will be used
in several different countries; 8D.1.

[2] Don't assume that everyone uses the same character set asyou do; 8D.4.1.

[3] Prefer using locales to writing ad hoc code for culture-sensitive 1/0; 8D.1.

[4] Avoid embedding locale name strings in program text; 8D.2.1.

[5] Minimize the use of global format information; §D.2.3, 8D.4.4.7.

[6] Prefer locale-sensitive string comparisons and sorts; 8D.2.4, 8D.4.1.

[7] Make facetsimmutable; 8D.2.2, 8D.3.

[8] Keep changes of localeto afew placesin aprogram; 8D.2.3.

[9] Letlocale handlethe lifetime of facets; 8D.3.

[10] When writing locale-sensitive 1/O functions, remember to handle exceptions from user-
supplied (overriding) functions; §D.4.2.2.

[11] Use asimple Money type to hold monetary values; §D.4.3.

[12] Use simple user-defined types to hold values that require locale-sensitive 1/O (rather than cast-
ing to and from values of built-in types); 8§D.4.3.

[13] Don't believe timing figures until you have a good idea of all factorsinvolved; 8D.4.4.1.

[14] Be aware of the limitations of time_t; 8D.4.4.1, 8D.4.4.5.

[15] Use adate-input routine that accepts a range of input formats; 8D.4.4.5.

[16] Prefer the character classification functions in which the locale is explicit; 8D.4.5, 8D.4.5.1.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

Section D.6 Exercises 933

D.6 Exercises

1. ([2.5) Definea Season_io (8D.3.2) for alanguage other than American English.

2. ([2) Define a Season_io (8D.3.2) class that takes a set of name strings as a constructor argu-
ment so that Season names for different locales can be represented as objects of this class.

3. ([B) Write a collate<char>: : compare() that gives dictionary order. Preferably, do thisfor a
language, such as German or French, that has more letters in its alphabet than English does.

4. ([R) Write aprogram that reads and writes bools as numbers, as English words, and as words in
another language of your choice.

5. ([R.5) Define a Time type for representing time of day. Define a Date_and_time type by using
Time and a Date type. Discuss the pros and cons of this approach compared to the Date from
(8D.4.4). Implement locale-sensitive I/O for Time and Date_and_time.

6. ([R.5) Design and implement a postal code (zip code) facet. Implement it for at least two coun-
trieswith dissimilar conventions for writing addresses. For example: NJ 07932 and CB21QA .

7. ((R.5) Design and implement a phone number facet. Implement it for at least two countries
with dissmilar conventions for writing phone numbers. For example, (973) 360- 8000 and
1223 343000.

8. ([R.5) Experiment to find out what input and output formats your implementation uses for date
information.

9. (2.5) Define a get_time() that ‘‘guesses’ about the meaning of ambiguous dates, such as
12/5/1995, but still rgjects all or amost all mistakes. Be precise about what ‘‘guesses’ are
accepted, and discuss the likelihood of a mistake.

10. ([R) Define a get_time() that accepts a greater variety of input formats than the one in
§D.4.4.5.

11. ((2) Make alist of the locales supported on your system.

12. ([R.5) Figure out where named locales are stored on your system. If you have access to the part
of the system where locales are stored, make a new named locale. Be very careful not to break
existing locales.

13. ([(2) Compare the two Season_io implementations (8D.3.2 and §D.4.7.1).

14. (C2) Write and test a Date_out facet that writes Dates using a format supplied as a constructor
argument. Discuss the pros and cons of this approach compared to the global date format pro-
vided by date_fmt (8D.4.4.6).

15. ((2.5) Implement 1/0 of Roman numerals (such as XI and MDCLII).

16. ((2.5) Implement and test Cvt_to_upper (8D.4.6).

17.([2.5) Use clock() to determine average cost of (1) a function call, (2) a virtual function call,
(3) reading a char, (4) reading a 1-digit int, (5) reading a 5-digit int, (6) reading a 5-digit dou-
ble, (7) al-character string, (8) a5-character string, and (9) a40-character string.

18. ([6.5) Learn ancther natural language.

The C++ Programming Language, Special Edition by Bjarne Stroustrup. Copyright 02000 by AT&T.
Published by Addison Wesley Inc. ISBN 0-201-70073-5. All rights reserved.

