
6 | | JUL 2014{cvu}

However, we must embrace the fact that code changes: any code that stands
still is a liability. No code is beyond modification. Treating a section of
code as avoidably scary is counterproductive. 

Questions
1. What particular attributes makes software easy to change? Do you

naturally write software like this?

2. How can we balance ‘no code ownership’ with the fact that some
people have more experience than others? How does this affect the
allocation of tasks to programmers?

3. Every project has code that changes frequently, and code that
changes little. The latter code may be staid because it’s not used,

because it is healthily designed for extension by external modules,
or because people actively avoid the nastiness within. How much of
each of these kinds of rigid code do you have?

4. Does your project tooling support your code changes? How can you
improve it?

Becoming a Better Programmer: The Book
Pete’s new book – Becoming a Better Programmer
– is published by O’Reilly. It’s available from
http://shop.oreilly.com/product/0636920033929.do

Dr Bjarne Stroustrup: An Interview
Emyr Williams begins a new series of interviews

in the programming world.

n 2013, I heard Pete Goodliffe talk about becoming a better
programmer, and he lined up panel of experts about how to become a
better programmer. Having heard the talk, I endeavoured to put as much

of it as I could in to practice. During one of the intervals, I had a chance
meeting with Bjarne Stroustrup, who was gracious enough to agree to be
interviewed for my blog. I was also encouraged to publish it in the ACCU
magazine, so here we are.

If you’re a C++ programmer, then Bjarne Stroustrup won’t need any
introduction at all. However, if you are new to C++, then Dr Stroustrup is
the designer and the original implementer of C++. He is currently a
Managing Director in the technology division of Morgan Stanley in New
York, a Visiting Professor in Computer Science at Colombia University,
and a Distinguished Research Professor in Computer Science at Texas
A&M University. His best known published work is The C++
Programming Language which is currently in its 4th edition.

How did you get started in computer programming? Was it a sudden
interest in computing? Or was it a gradual process?

During my last year of high-school, I had to decide whether to go to
university and if so what to study. I decided to study mathematics
because I was pretty good at that in high school, but I wanted a
practical form of mathematics, some kind of applied math. That
way, I would be able to make a living doing math after graduation,
rather than becoming a teacher. So, I enrolled in ‘Mathematics with
Computer Science’ in my home-town university (Aarhus
University) because I mistakenly thought that ‘Computer Science’
was a form of applied math. It was good that I was wrong about that
because I wasn’t as good at math as I thought at the time (though
being a poor mathematician is better than not being a
mathematician) and I absolutely loved Computer Science – and
especially programming – when I eventually was introduced to it in
my second year at university.

What was the first program you ever wrote? And what language did you
write it in?

In my first Computer Science course, we learned several languages
and wrote tiny programs in those. I don’t remember those exercises,
though. The primary language taught was Algol60. The first

program I do remember was a small graphics program written in
Algo60. It was probably my first program that was not a set exercise.
It connected points on a super-ellipse to draw pretty pictures. The
‘user interface’ allowed me to specify the parameters for the super-
ellipse, the number of points, and the number of lines. From a
programming point of view, it combined math with graphics.

What would you say is the best piece of advice you’ve ever been given
as a programmer?

Just one piece of advice? “Test early and often.” But maybe that’s
just my own variant of the old Chicago advice about elections.
[“Vote early and vote often: http://en.wikipedia.org/wiki/
Vote_early_and_vote_often]

Try not to be too clever: Bugs hide in complex code. Be clear and
explicit about what you are trying to build, and how. By ‘explicit’, I
mean ‘write it down in good clear English that others can read’.
Articulating a design is important and helps you when it comes to
construct test cases and write assertions. Always think about how a
piece of code should be used: good interfaces are the essence of
good code. You can hide all kinds of clever and dirty code behind a
good interface if you really need such code.

If you were to start your career again now, what would you do
differently? Or if you could go back in time and meet yourself when you
were starting out as a programmer, what would you tell yourself to focus
on?

I think I would have taken a year off to travel the world and improve
my interpersonal skills. Had I known that I’d spend most of my
career writing in English and giving talks in English, I might have
paid more attention in my foreign language classes. On the other
hand, I have found topics with no apparent practical use (such as
literature, history, and even philosophy) at least as useful as many
specific technical skills. It is good not to have too narrow a focus.

 I

EMYR WILLIAMS
Emyr Williams is a C++ developer who is on a mission to
become a better programmer. His blog can be found at
www.becomingbetter.co.uk

Nothing is Set in Stone (continued)

http://en.wikipedia.org/wiki/Vote_early_and_vote_often
http://en.wikipedia.org/wiki/Vote_early_and_vote_often
http://shop.oreilly.com/product/0636920033929.do

JUL 2014 | | 7{cvu}

Bertrand Russell: “The time you enjoy wasting is not wasted
time.”

What was the biggest “ah ha” moment or surprise you’ve experienced
when chasing down a bug?

I don’t think this question applies. I dislike debugging and my usual
reaction to finally finding a bug is “How could I be daft enough to
write that!” Alternatively, “What was he/she thinking?” Often, a
simple invariant would have caught the problem early or a slight
restraint on ‘cleverness’ would have avoided the problem altogether.
What I enjoy is to design and to express my designs in code.
Sometimes, the realization of a design can be amazingly beautiful.
‘Getting it’ with the STL (Alex Stepanov’s handiwork) was an
“Aha!” moment. Discovering how to
express the STL better with concepts
comes close.

A lot is said about elegant code these days.
What is the most elegant code you’ve seen?
And how do you define what elegant code is?

I’d say that one of the best answers I’ve
seen for what makes elegant code, is
something I’ve read from ACCU’s own
Roger Orr:

 }

Just that closing brace. Here is where all the ‘magic’ happens in
C++. Variables get destroyed, memory gets released, locks get
freed, files get closed, names from outside the closed scope regain
their meaning, etc. This is where C++ most significantly differs
from other languages. It is interesting to see how destructors – an
invention (together with constructors) from the first week or so of
C++ – have increased in importance over the years. So many of the
modern and most effective C++ techniques critically depend on
them

With the advent of C++ 14 upon us, where do you see C++ going in the
future? Is there anything you’d like to see, or something you’d wish you’d
done differently?

For the future, I’d like to see better concurrency support, concepts
(requirements for template arguments), and increased simplicity. I’d
like to explore the idea of simplicity within C++ with features such
as range-for loops, auto, and libraries that make simple things
simple. “Within C++, there is a much smaller and cleaner
language struggling to get out” (and no, that language is not C, D,
Java, C#, or whatever). I’d like to explore what such a “much
smaller and cleaner language” might look like in general and how
it could be embedded into C++.

The essence of C++ is that it provides a direct map to hardware and
offers mechanisms for very general zero-overhead abstraction. A
future C++ should be better at both. This precludes simple imitation
of many modern ideas and trends. We can learn a lot from other
languages (and always have done so), but direct import of language
features is non-trivial.

The ‘time machine question’ is easier to answer because it has no
effect on reality. We can’t change the past and even if we could, I’m
pretty sure I’m no smarter than 1980s-vintage Bjarne and he had a
much better feel for what was possible at the time. Even the best
time machine would not allow me to compile C++14 on a 1MB,
1MHz, 1985 computer. If I could have dropped the “Concepts Lite”
design on Bjarne’s desk in 1987, we might have avoided a lot of
problems. At that time, I was looking at ways of constraining
template arguments, so I would have recognized the importance of
the ideas. Furthermore, the complexity and compile-time overheads
are minimal so I could have implemented “Concepts Lite” well
using 1980s technology. Of course, working from first principles, I
would not have chosen the C declarator syntax or two-way
conversions between fundamental types, but to fix those, you would

need to take the time machine a few years further back for a chat
with Dennis.

With technology moving so fast these days, where do you think the
next big shift in computer programming is going to be?

Hard to say; there are so many different kinds of programming. I’m
not even sure what the last big shift was. Dynamic languages?
Object-Oriented Programming? Functional Programming? XML?
Virtualization? C? Generic Programming? I’m pretty sure I could
point to areas where each of those answers would be quite
reasonable – as well as areas where each would be ludicrous. The
field of software development is just too huge and diverse for simple
generalizations.

In the parts of the C++ world that I know
best, my guess is that the improved
support for concurrency in C++17
(various higher-level models of
concurrency beyond the basic threads-
and-locks level) will cause major changes
and that concepts (starting with
‘Concepts Lite’) will complete generic
programming’s move into the
mainstream. That combination, coming
on top of the improvements provided in

C++11, should completely change the way C++ is used.

I say “should” rather than “will” because I fear that many will hold
back out of fear of novelty, for lack of intellectual flexibility, or
because of constraints from old code bases. People are more likely
to see the risks and complications of a change than to appreciate the
risks and costs incurred by using outdated tools and techniques.
Maybe, I’m being a bit less optimistic than I should be: people who
have used C++11 tend to complain bitterly when they have to go
back to C++98. Significant progress has been made and we can now
write simpler and better code than we used to. Many people know
that and they are not going to accept “the old ways” forever.

Finally, do you have any advice for any kids or adults who are
looking to start out as a programmer?

Don’t just program. Know what problems you want to solve using
programming. Don’t rush into programming. Work on your
communication skills. And don’t forget to have fun – you are much
better at things you enjoy doing than things you consider tedious.
Learn to see the beauty in elegant and efficient code! 

A Tour of C++, for people who want to quickly know what C++11 is, and
his textbook for beginners: Programming: Principles and Practice using
C++, which now uses C++11 and some bits of C++14 is available now
from your usual book reseller.

Try not to be too clever:
Bugs hide in complex

code. Be clear and explicit
about what you are trying

to build, and how

