
Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 1

Foundations of C++

Bjarne Stroustrup

Texas A&M University

Abstract
C++ is a large and complicated language. People get lost in details. However, to write good C++ you only
need to understand a few fundamental techniques – the rest is indeed details. This paper presents a few
fundamental examples and explains the principles behind them. Among the issues touched upon are
type safety, resource management, compile-time computation, error-handling, concurrency, and
performance. The presentation relies on and introduces a few features from the recent ISO C++
standard, C++11, that simplify the discussion of C++ fundamentals and modern style.

Introduction
A programming language – any programming language – has a few fundamental constructs, techniques,
and underlying models. Understand those and you have a good idea of what can be expressed in the
language, and how. In addition, most languages – and especially older languages that are maintained
with a concern for compatibility – provides a host of “incidental” features that can distract from
understanding and complicate use. Here, I will briefly present most of the key concepts of C++.
Naturally, my presentation will not be complete in either features offered or their details. That’s what
textbooks and standards are for. So, with the caveat that there is always much more that could be said,
here we go!

C++ is defined by its ISO Standard [ISO11]. A detailed description can be found in [BS00], a tutorial for
beginners in [BS08], and a list of language and library features added for C++11 in [BS-FAQ].

I assume that you know about traditional naming and lexical scoping so I don’t waste time on such
topics. Similarly, I assume that you are at least superficially acquainted with C/C++ syntax and linkage
conventions.

Ideals
The aim of C++ is to help in classical systems programming tasks. It supports the use of light-weight
abstraction for resource-constrained and often mission-critical infrastructure applications. The aim is to
allow a programmer to work at the highest feasible level of abstraction by providing

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 2

• A simple and direct mapping to hardware
• Zero-overhead abstraction mechanisms

The aim is to support a type-rich style of programming. In particular, C++ supports type-safe
programming with a non-trivial set of types.

By “light-weight abstraction,” I mean abstractions that do not impose space or time overheads in excess
of what would be imposed by careful hand coding of a particular example of the abstraction.

Naturally, not every application meets these ideals and C++ provides no mechanisms for enforcing
ideals. In particular, a programmer can choose to write a low-level-C style and/or violate every rule of
good programming. That is not my topic here.

Memory and Objects
C++ maps directly onto hardware. Its basic types (such as, char, int, and double) map directly into
memory entities (such as, bytes and words), most arithmetic and logical operations provided by
processors are available for those types. Pointers, arrays, and references directly reflect the addressing
hardware. There is no “abstract”, “virtual” or mathematical model between the C++ programmer’s
expressions and the machine’s facilities. Memory is seen as sequences of bytes. A typed object is given a
location in memory (a sequence of bytes) and values are placed in such objects. Sequences of objects
are dealt with as arrays, typically accessed through pointers holding machine addresses. Often, code
manipulates sequence of objects defined by a pointer to the beginning of an array and a pointer to one-
beyond-the-end of an array:

That is, the array a can be seen as a half-open sequence of elements [p:q). The flexibility of forming such
addresses by the user and by code generators can be important.

User-defined types are created by simple composition. Consider a simple type Point:

class Point { int x; int y; /* … */ };

Point xy {1,2}; // named and scoped object

Point* p = new Point{1,2}; // free store (dynamic, heap) object

pointer p:

array a:

pointer q:

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 3

A Point is simply the concatenation of its data members, so the size of the Point xy is simply two times
the size of an int. Named objects (of any built-in or user-defined type) are allocated statically or on the
stack. Only if we explicitly allocate an (unnamed) Point on the free store (the heap), as done for the
Point pointed to by p, do we incur memory overhead (and allocation overhead). Similarly, basic
inheritance simply involves the concatenation of members of the base and derived classes:

class X { int b; }

class Y : public X { int d; };

Only when we add virtual functions (C++’s variant of run-time dispatch supplying run-time
polymorphism), do we need to add supporting data structures, and those are just tables of functions:

class Shape { // a base class; an interface
public:
 virtual void draw() = 0;
 virtual Point center() const = 0;
 // …
};

Class Circle : public Shape { // a derived class
 Point c;
 double radius;
public:
 void draw() { /* draw the circle */ }
 Point center() const { return c; }
 // …
};

Shape* p = new Circle{Point{1,2},3.4};

1

2

xy:

1

2

Heap
info

 p:

b b

d

X:
Y:

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 4

What you see is what you get. For more details see [BS04]. In general, C++ implementations obey the
zero-overhead principle: What you don’t use, you don’t pay for [BS94]. And further: What you do use,
you couldn’t hand code any better.

Please note that not every language provides such simple mappings to hardware and obeys these simple
rules. Consider the C++ layout of an array of objects of a user-defined type:

class complex { double re, im; /* … */ };
complex a[] = { {1,2}, {3,4} };

The likely size is 4*sizeof(double) which is likely to be 8 words (assuming a 32-bit word). Compare this
with a more typical layout from a “pure object-oriented language” where each user-defined object is
allocated separately on the heap and accessed through a reference:

The likely size is 3*sizeof(reference)+3*sizeof(heap_overhead)+4*sizeof(double). Assuming a reference
to be one word and the heap overhead to be two words, we get a likely size of 19 words to compare to
C++’s 8 words. This memory overhead comes with a run-time overhead from allocation and indirect
access to elements. That indirect access to memory typically causes problems with cache utilization and
limits ROMability.

Heap
info

vptr

{1,2}

draw

center

Circle’s
draw()

Circle’s
center()

vtbl:

p:

1 a: 4 3 2

References

Reference:

 2 1 4 3

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 5

Memory is turned into an object containing a value of some type by a constructor [BS94, TR12]. This
operation is reversed by a destructor: after a destructor is run the object no longer exist and its former
location is simply memory again. The meaning of constructors and destructors for built-in types and
simple aggregates are language defined. For more complex types, the programmer can define
constructors and destructors.

Compile-time Computation
Sometimes, we prefer a computation be done at compile-time. The reasons vary, for example:

• Efficiency: To pre-calculate a value (often a size). For simple cases, that is done by an optimizer.
Examples include object and array sizes and table values.

• Type-safety: To compute a type at compile time.
• Simplify concurrency: you can’t have a race condition on a constant.

In C++11, we can do type-rich computation at compile time. Consider a simple distance calculation:

constexpr double d = dist(NewYork,Boston);

Here I assume that the city names are 2D grid points and that dist() computes the distance between
them. The constexpr keyword is C++’s way of requesting compile-time evaluation. The code doing the
calculation might look like this:

struct City { double x, y };
constexpr double csqrt(double) { /* calculate square root */ }
constexpr double square(double d) { return d*d; }
constexpr double dist(City c1, City c2)

 { return csqrt(square(abs(c1.x-c2.x))+square(abs(c1.y-c2.y))); }

I had to define my own csqrt() because the standard library sqrt() isn’t designed to work at compile
time; constexpr is C++’s way of requiring that a function is executable at compile-time. If I wanted to, I
could add unit checking [GDR10, BS12]:

constexpr Distance d = dist_in_km(NewYork,Boston);

Various forms of user-specified compile-time computation are essential in critical embedded systems
applications, much low-level code, and many high-end numerical applications.

Memory (bits) Memory (bits)

Object
(containing a value)

constructor destructor

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 6

Error Handling
Errors that cannot be handled locally are reported by throwing an exception. An exception is a value of
some type, usually a user-defined type. Code that is interested in handling a type of exception provides
a handler (catch-clause) for it. For example:

void do_task(int i)
{
 if (i==0) throw std::runtime_error{“zero argument to do_task”};
 If (i<0) throw Bad_arg{i};
 // do the task and return normally
}

void task_master(int i)
{
 try {
 do_task(i);
 // …
 }
 catch (Bad_arg a) {
 Cout << “do_task called with negative argument” << a.val << “\n”;
 }
}

Code that cannot perform its required task throws an exception and that code that requests a task to be
done provides a handler for the kinds of errors it is prepared to handle. If an exception that the
requestor has not expressed interest in is thrown, the requestor itself fails.

Exceptions can – and often do – carry information. A catch-clause is associated with a try-block. An
exception propagated up the call stack until caught. An uncaught exception causes program
termination. A thread can transfer a thrown exception (that it is not willing to handle) to another
(calling) thread.

For hard-real-time programming (and only for that), this exception-based error handling must be
abandoned for a lower-level error-handling style. The reason is that it is hard to provide good real-time
guarantees for exception propagation.

Containers
How do you store a lot of data? We place it in user-defined containers, such as vectors, lists, and maps.
The archetypical C++ container is the vector. Here is a simple first Vector:

template<typename T> // T is the element type
class Vector {
public:
 Vector(); // default constructor; make empty vector
 Vector(int n); // constructor: initialize to n elements of default type

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 7

 Vector(initializer_list<T>) ; // constructor: initialize with a list of elements
 ~Vector(); // destructor: deallocate elements
 int size() ; // number of elements
 T& operator[](int i); // access the ith element
 void push_back(const T& x); // add x as a new element at the end of the vector
 T* begin(); // fist element
 T* end(); // one-beyond-last element
private:
 int sz; // number of elements

T* elem; // pointer to sz elements of type T
};

T* means “pointer to T” and T& means “reference to T.” Given that declaration, we can allocate and
manipulate elements of an arbitrary type, T:

void f(Vector<string>& vs)
{
 Vector<int> sizes;
 for (auto x : vs) // loop through all elements of vs

sizes.push_back(x.size());
 if (0<vs.size())

vs[0] = “Whatever!”;
 // …
}

The range-for loop uses Vector’s begin() and end() members to determine its range. We might call f()
like this:

int main()
{
 f({“Wheeler”, “Wilkes”, “Radcliffe”, “Appleton”, “Rutherford”});
 Vector<string> places(10); // 10 empty strings

places[2] = ”Cambridge”;
places[4] = “Princeton”;
// …

 f(places);
}

The declaration of Vector separates the class into two parts, the public interface and the private
implementation (so far, just a representation). The implementation of the Vector consists of the
definitions of the member functions. In particular, the constructors and the destructor manage a
Vector’s resource, its elements:

template<typename T>
Vector<T>::Vector(int n) // make a vector with n elements of default value

:sz{n},
 elem{allocate<T>(sz)} // allocate space for sz elements of type T

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 8

{
 If (sz<0) throw std::runtime_error{“negative Vector size”};
 std::uninitialized_fill(elem,elem+sz,T{}); // initialize to default
}

The standard technique is to throw an exception if a constructor cannot establish its invariant. Here the
invariant is that elem points to sz elements of type T allocated on the free store by allocate<T>(sz), a
simplified version of the standard allocator mechanism. The std:: is used to indicate facilities provided
by the ISO C++ standard library (so we don’t have to do it ourselves). A constructor handling {} lists is
defined as taking an argument of the standard-library type initializer_list:

template<typename T>
Vector<T>::Vector(std::initializer_list<T> lst) // make a vector with element from the list

:sz{lst.size()},
 elem{allocate<T>(sz)}

{
std::uninitialized_copy(lst.begin(), lst.end(), elem);

}

The destructor releases resources acquired:

template<typename T>
Vector<T>::~Vector()
{
 destroy<T>(elem,n); // invoke member destructors; then deallocate elem[]
}

The destroy function is a simplification of the deallocation part of the standard allocator mechanism.

This Vector is pretty basic, but is illustrates several fundamental C++ techniques and their supporting
language features. Containers and resource management are not built into the language or into a run-
time support system. Instead, only the minimal facilities for dealing with objects and fixed-sized
sequences of objects in memory are “built-in.” Everything else is “user-defined” and often provided by
libraries written in C++. The standard library vector, map, set, and list are examples of containers built
using the techniques presented here:

• classes for separating interfaces from implementations,
• constructors for establishing invariants, including acquiring resources,
• destructors for releasing resources,
• templates for parameterizing types and algorithms with types
• mapping of source language features to user-defined code specifying their meaning, e.g. [] for

subscripting, the for-loop, new/delete for construction/destruction on the free store, and the {}
lists.

• use of half-open sequences, e.g. [begin():end()), to define for-loops and general algorithms.

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 9

• Use of standard-library facilities to simplify specification and implementation

Importantly, this abstraction from “memory” to “containers of objects” carries no overheads beyond the
code necessarily executed for memory management, initialization, and error checking.

Note that

• There is no data stored in a Vector object beyond the two named members
• There is no requirement that the element type should be part of a hierarchy. The only

requirements on a template argument are imposed by its use; this is “duck typing.”
• The operations on a Vector are not required to be dynamically resolved (virtual). Simple

operations, such as size() and [], are typically inlined.

In other words, these language features and techniques (“abstraction mechanisms”) are light weight,
aimed for use in demanding systems programming and infrastructure implementation tasks. I could, of
course, have built a few key abstractions, such as vector and string, into the language. The reason not to
do that is to allow the programmer to define a much larger and varied set of abstractions without losing
the flexibility and efficiency needed for the most demanding systems programming tasks.

Copy and Move
To complete a class, we have to consider if and how objects can be copied and moved around. As
defined above, Vector cannot be copied:

Vector capitals { “Helsinki”, “København”, “Riga”, ”Tallinn” };
Vector c2 = capitals; // error: no copy defined for Vector

 By default, you can copy only objects with “simple representations.” When I defined a destructor for
Vector, I implied that I did not consider the representation Vector simple: the elem pointer represents
ownership. Let us define copy:

template<typename T>
Vector<T>::Vector(const Vector& v) // copy constructor

 : sz{v.sz}, elem{allocate<T>(v.sz)}
{
 std::uninitialized_copy(v.begin(),v.end(), elem);
}

This defines copy initialization. In addition, we can define assignment of one Vector by another:

template<typename T>
Vector<T> Vector<T>::operator=(Vector<T>& v) // copy assignment
{
 Vector<T> tmp {v}; // copy v
 destroy<T>(elem,sz); // delete old elements

elem = tmp.elem; // “steal” tmp’s representation

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 10

 sz = tmp.sz;

tmp.elem = nullptr;
tmp.sz = 0;

 return *this;
}

I chose to have “copy” mean “copy all elements” because that is the intuitive meaning of assignment,
fits best with classical mathematical notions, and is what the C++ standard provides for containers. By
itself, that implies a logical or a performance problem. How do we get a Vector out of a function?
Consider:

Vector<int*> find_all(Vector<int>& v, int val) // find all occurrences of val in v
{
 Vector<int*> res;
 for (int& x : v)

if (x==val)
res.push_back(&x); // add the address of the element to res

 return res;
}

The member function push_back() is one of the most useful standard-library container functions. It adds
an element to the end of a container, increasing the container’s size by one. Here, I have omitted its
definition here to avoid getting side tracked. The find_all algorithm can be use like this:

void test()
{
 Vector<int> lst { 1,2,3,1,2,3,4,1,2,3,4,5 };
 for (int* p : find_all(lst,3))
 cout << “address: “ << p << “, value: “ << *p << ‘\n’;
 // …
}

This should work, and it does, but the cost involved in copying the elements out of find_all() can be
significant. In particular, I might use something like find_all() to locate large numbers of elements in
Vectors of millions of elements. This makes people search for alternatives to returning a container “by
value,” such as passing a vector to be filled as an argument, returning a pointer to a result stored on the
free store, or plugging in a garbage collector. These alternatives all have serious logical or performance
problems. Fortunately, there is a much simpler and more general solution: Note that I didn’t want to
copy anything; I just wanted to transfer (move) the result vector out of find_all(). We can define move
operations in a way very similar to the way we define copy operations. Move operations “steal” the
representation of an object, leaving behind an “empty” object:

template<typename T>
Vector<T>::Vector(Vector&& v) // move constructor

: sz{v.sz}, elem{v.elem} // grab v’s elements

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 11

{
 v.elem = nullptr; // make v empty
 v.sz = 0;
}

template<typename T>
Vector<T> Vector<T>::operator=(Vector<T>&& v) // move assignment
{
 destroy<T>(elem); // delete old elements
 elem = v.elem; // grab v’s elements
 sz = v.sz;
 v.elem = nullptr; // make v empty
 v.sz = 0;
 return *this;
}

The && means “rvalue reference” and the effect is that only rvalues can be used as arguments to move
operations. Rvalues are objects that will not be used again, such as a local variable used as the return
value.

By using the move constructor rather than the copy constructor to return the value from find_all(), that
return is efficient even if the returned Vector happens to have a million elements.

For this to work, we have to declare the copy and move operations in the definition of Vector:

template<typename T> // T is the element type
class Vector {
public:
 // …
 Vector(const Vector&); // copy constructor
 Vector(Vector&&); // move constructor
 Vector& operator=(const Vector&); // copy assignment
 Vector& operator=(Vector&&); // move assignment
 // …
};

If a class provides both move and copy operations, move is preferred for rvalues and copy for lvalues
[DWB63]. All the standard library containers, including vector and string, have both copy and move
operations. This implies that for real program, all the moderately clever and complicated code in the last
two sections have already been done for the programmer. What is left is the much simpler use of
vector, etc.

RAII
Systems manipulate resources. We must manage many kinds of resources, such as files, sockets, locks,
threads, and database transactions. A resource is anything that a program acquires from another part of

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 12

the system and must (explicitly or implicitly) release back to its owner after use. An unused and
unreleased resource is called a leak. Memory is an important example of a resource. If resources are not
properly released, the system’s performance will suffer and eventually a long-running system will fail for
lack of usable memory. How do we prevent resource leaks?

The constructor/destructor technique used for Vector generalizes to any scoped use of a resource and
the move technique handles transfers of ownership between scopes. The key idea is that a resource is
always owned by a local (scoped) object. Such a local object is sometimes called a resource handle (e.g.
file handle), an owner, or simply an interface (e.g. a Vector is the interface to its elements). The handle’s
constructor acquires the resource and the handle’s destructor releases it. Consider a standard-library
lock used to ensure exclusive access to some shared data:

std::mutex m; // a system resource
int sh; // shared data

void f()
{
 // …
 std::unique_lock lck(m); // grab (acquire) the mutex
 sh+=1; // manipulate shared data
} // implicitly release the mutex

This technique is usually called RAII (“Resource Acquisition Is Initialization”) and is widely used in
modern C++.

Looking at a simple example, it is tempting to think that a pair of lock()/unlock() functions would be as
good or better than using an object of the manager type unique_lock. In practice, it is not so. A handler
has a destructor, so you cannot forget the release operation. But how could anyone forget something as
simple as and unlock()? Or forget an fclose(), a free(), or a delete? Well, people do, so resource leaks in
undisciplined code are common (in any language). There are several reasons, including:

• Often, a resource doesn’t look like a resource. For example, a File* is just a pointer to the
compiler and a casual reader and nothing (except the manual) says that fclose() must be called
to avoid the leak of a file handle.

• Often, several resources need to be acquired and their patterns of acquisition and release vary.
• Error handling typically requires that a resource is released only if acquired and that related

resources are released in some specific order.
• Complex control structures (especially when several functions are involved) obscure acquisition

and release patterns.

Consider a simple example:

// unsafe, naïve use:
void f(const char* p)
{

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 13

 FILE* f = fopen(p,"r"); // acquire
 // use f
 fclose(f); // release
}

This seems innocent enough, but if the “use f” code contains a return statement, a C-style longjmp, or
an exception throw, we never get to the fclose and we have a leak. This can easily happen if the “use f”
code is long or complicated. People often try to compensate with code that catches exceptions:

// naïve fix:
void f(const char* p)
{
 FILE* f = 0;
 try {
 f = fopen(p, "r");
 // use f
 }
 catch (…) { // handle every exception
 if (f) fclose(f);
 throw; // re-throw; let a caller handle this exception
 }
 if (f) fclose(f);
}

It is easy to devise a prettier syntax (e.g., Java’s finally), but the fundamental problem is that this
requires the programmer’s attention in each place a resource is used. We may open files in dozens of
places in a program and in each place the programmer has to remember that fopen() acquires a file and
remember to release it. Using return values to handle errors, rather than exceptions, doesn’t reduce the
complexity.

The solution is to explicitly represent the file handle as a resource:

 class File_handle { // belongs in some support library
 FILE* p;
 public:
 File_handle(const char* pp, const char* r)
 { p = fopen(pp,r); if (p==0) throw File_error{pp,r}; }
 File_handle(const string& s, const char* r)
 { p = fopen(s.c_str(),r); if (p==0) throw File_error{pp,r}; }
 ~File_handle() { fclose(p); } // destructor: close file
 // copy and/or move operations
 // access functions
 };

Now we can simplify the original code to:

 void f(string s)

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 14

 {
 File_handle fh {s, "r"};
 // use fh
 }

The handle class, here File_handle, needs only be defined once and put in a library. For example,
unique_lock, the handle for mutexes, is defined in the standard library.

Using such handles, multiple resources are released in the reverse order of acquisition. That is almost
always correct. Acquiring a few resources, but failing to acquire all that are needed is handled correctly
without programmer intervention. That is crucial for errors in constructors of complex data structures,
such as objects from a complex class hierarchy or elements of a container.

Generally, a handle can be moved, but not copied, so move operations need to be provided. For
example:

class File_handle { // belongs in some support library
 FILE* p;
 public:
 // …
 File_handle(File_handle&& h) : p{h.p} { h.p=nullptr; } // move constructor
 File_handle& operator=(File_handle&& h) { p=h.p; h.p=nullptr; } // move assignment
 // access functions
 };

Given that, we can pass a File_handle around (cheaply).

Memory is not the only resource, so a simply adding a garbage collector is not a solution, at least not a
complete solution.

Class Hierarchies
C++ allows for the definition and use of class hierarchies. The scheme is fairly conventional, but general.
It allows for multiple inheritance both of interface classes (abstract classes) and of classes with
implementation. The layout of objects is minimal and obvious. The mechanism for virtual function calls
is minimal, obvious, and runs in constant time. The resulting compactness, speed, and predictability are
essential for many real-time uses. The (classical) Circle-and-Shape example from “Memory and Objects”
is fairly typical. A class can be derived from another (as Circle was from Shape). The resulting class is
called a derived class and – if publicly derived – is a subtype of the other class, called its base.

The protection model is that

• public members and bases of a class can be accessed by all
• protected members and bases of a class can be accessed only by members of a derived class
• private members and bases of a class can be accessed only by members of that class

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 15

To avoid confusion and maintenance problems, I recommend using protected only for functions and
bases.

Abstract classes, like Shape, provide the most stable interfaces because they reveal very little about
implementation details (such as object sizes), which are supplied in derived classes, such as Circle.

C++ does not provide a universal base class. I consider such a class an unnecessary implementation-
oriented artifact that imposes avoidable space and time overheads. Also, a universal “Object” base
encourages underspecified (overly general) interfaces that let errors that could be detected at compile
time through to run time. Typically, C++ uses parameterization where another language might use a
common base class and require implicit or explicit type conversion to determine the exact derived class.

Algorithms
A function template that implements an algorithm for a variety of types is conventionally called an
algorithm. The C++ standard library provides many algorithms, such as sort and find. For example:

void f(vector<int>& v, list<string>& lst)
{
 std::sort(v.begin(),v.end());
 auto p = std::find(lst.begin(),lst.end(),”Aarhus”); // find “Aarhus” in lst
 if (p!=lst.end()) { // found: *p==“Aarhus”
 // …
 }
 else { // not found *p!=“Aarhus”
 // …
 }
 // …
}

Standard-library algorithms, such as sort and find, take half-open sequences of elements, presented as a
pair of iterators, as arguments. An iterator is something that points to an element of a sequence. To get
to the next element of a sequence, we use ++ and to access the element pointed to, we use *.

Note that I did not actually name the type of p. Instead, I said auto, which gives a variable the type of its
initializer. This is often a useful shorthand and can be a significant help in generic programming. Here, it
saved me from typing list<string>::iterator. Interestingly, this is the oldest feature of C++11: I
implemented auto in 1983, but had to take it out for reasons of C compatibility.

We could implement find like this:

template<typename Iter, typename Value>
Iter find(Iter first, Iter last, Value val)
{
 while (first!=last && *first!=val) ++first;
 return first;

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 16

}

That is, find compares val to each element in the sequence until it finds one that is equal. If you like the
terse C-style syntax, you’ll find the body of find beautiful. If not, you should still appreciate that find
works for a wide variety of data structures and a wide variety of element types with no overhead
compared to hand-crafted code for a specific container and value pair. Returning the end of the
sequence to indicate “not found” is a standard-library convention.

Algorithms are typically rendered much more useful by parameterizing them with operations. For
example, find would be much more useful if instead of simply finding an element of a given value, it
found an element that met some user-supplied criterion. The “find” that does that is called find_if. For
example:

void g(vector< string>& vs)
{
 auto p = std::find_if(vs.begin(),vs.end(),Less_than{”Griffin”});
 if (p!=vs.end()) { // found: *p<”Griffin”
 // …
 }
 else { // not found *p>=”Griffin”
 // …
 }
 // …
}

Less_than is a function object, that is a type for which an object can be called like a function. We can
define find_if like this

template<typename Iter, typename Value>
Iter find_if(Iter first, Iter last, Predicate p)
{
 while (first!=last && !p(*first)) ++first;
 return first;
}

That is, find_if calls the predicate for each element in the sequence. In our example, p(*first) means
Less_than{”Griffin”}(*first) which in turn means *first<”Griffin”, assuming that Less_than has an
obvious definition, such as:

struct Less_than {
 String s;
 Less_than(const string& ss) :s{ss} {} // store the value to be compared against
 bool operator(const string& v) const { return v<s; } // do the comparison
};

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 17

The general function-object notation can be verbose, but we can let the language write the function
object for us by using the lambda notation:

auto p = std::find_if(vs.begin(),vs.end(),[](const string& v) { return v<”Griffin”; });

Function objects (incl. lambdas) are very efficient and general because they are easily inlined and can
carry information. In particular, simple function objects tend to significantly outperform indirect calls to
simple functions. They are the basic parameterization mechanism of the standard library.

If the sequence notation gets too cumbersome, we can define algorithms over containers. For example:

namespace MySTL {
 template<class C>

void sort(C& c) { std::sort(c.begin(),c.end(); }
// …

 }

Given that, I can write sort(v) for a container v, rather than sort(v.begin(),v.end()). Notation matters
more than we usually like to believe.

Templates are the language-technical basis for generic programming in C++. Similarly, class hierarchies
are the language technical basis for Object-oriented programming in C++. These two programming styles
(“paradigms”, if you must) are not meant to be disjoint. Rather, they are meant to be used in
combination. For example, vector<Shape*> is a container of a run-time polymorphic type. Any use will
necessarily involve both generic and object-oriented techniques. For example, consider the classical
“draw all shapes example”:

template<typename Cont>
void draw_all(Cont& c)
{
 for_each(c.begin(),c.end(), [](Shape* p) { p->draw(); }
}

Much of the distinction between object-oriented programming and generic programming is an illusion
based on a focus on language features and incomplete support for a synthesis of techniques.

Type functions
Templates, as used to parameterize vector with its element type in “Containers,” can be seen as
generators. A function template generates functions and a class template generates classes. Thus a
template can be understood as a function from a set of arguments to a function or a type. For example,
vector<T> is a function that produces a vector of Ts from the type T. The evaluation of such a type
function is called template instantiation. Template instantiation is Turing complete [TLV03]. Template
arguments are typically types or integers.

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 18

This view of templates as type functions gains great practical importance when applied to functions that
associate properties to types. For example, elements in a container have a type. We would like to name
that type for every data structure we consider a container, independently of whether its designer
planned for that. For starters, we can define a struct that defines a name value_type for every container
that has a member type called value_type:

template<typename Cont>
struct container_traits {
 using value_type = typename Cont::value_type;
 // …
}

template<typename T>
using Value_type = typename container_traits<T>::value_type;

For example, Value_type<std::vector<int>> is int. That’s not interesting in itself, but given that, we can
define Value_type for types that do not have a member called value_type. For example, for any pointer,
T*, the value type is T:

template<typename T>
struct container_traits<T*> {
 using value_type = T;
 // …
}

Technically, this is a specialization of container_traits for pointers. Specialization is the language-
technical basis for template metaprogramming [TLV95]. Now, Value_type<int*> is int. We have
provided a type function Value_type that provides the type of a contained element for every data
structure we consider a container. As a user, the implementation details are immaterial, and we can just
write

 Value_type<X> a;

Traits are widely used in the implementation of the standard library.

There is an obvious weakness in my description of container_traits: I said “a type that I consider a
container” rather than precisely specifying the requirements for being a container. In other words, the
arguments to a template are unconstrained and only their instantiations are type checked. This is “Duck
tying” (“if it walks like a duck and quacks like a duck, it’s a duck”) and leads to late (link-time) type
checking and appallingly poor error messages.

Designing a system of requirements (called a concept in C++) is still a research topic. A concept design
for C++0x [DG06] failed to meet the needs of C++’s large and diverse user community and concepts is an
area of active research [GDR06], [SM08], [SS11], [SS12]. The demands of compile-time efficiency (within
a few percent of unconstrained templates), run-time efficiency (no slower than templates with
unconstrained arguments), ease of use by non-experts, no verbosity, ability to handle type conversion,

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 19

ability to interoperate with unconstrained templates, and ease of conversion of pre-concept C++
programs makes this a challenging task.

Concurrency
C++ must support the forms of concurrency offered by the hardware and operating system on which it
runs. Something else may make it a better platform for specific applications, but not supporting “the
system’s” notion of concurrency would disqualify C++ as a systems programming language.
Consequently, ISO standard C++ supports a conventional threads-and-locks model of concurrency. I
consider threads-and-locks an unfortunate low-level view, but higher level concurrency models can be
efficiently built as libraries on top of what the standard offers. C++ provides support for lock-free
programming for cases where you have to get really close to the hardware [AW12].

What the standard offers differs from earlier C and C++ thread implementations in being type safe.
Consider a simple example of a function, f, and a function object, F, being run on separate threads:

void f(vector<double>&); // function

struct F { // function object
 vector<double>& v;
 F(vector<double>& vv) :v{vv} { }
 void operator()();
};

void code(vector<double>& vec1, vector<double>& vec2)
{
 std::thread t1 {f,vec1}; // f(vec1)
 std::thread t2 {F{vec2}}; // F{vec2}()
 t1.join();

t2.join();
// use vec1 and vec2

}

For simplicity, I have assumed that f and F modify their arguments. Note how t1’s constructor takes the
function to be called followed by its arguments. It will accept any function as long as its arguments type
checks using what is called variadic templates [???]. However, here the simplicity of the interface is
more important than the implementation technology.

I consider that style of concurrency clumsy, with endless opportunity for confusion and avoidable
overheads. However, It does not require regression to type-unsafe the C-style void** and macros
common in older threads programming and is supported with a variety of synchronization mechanisms
(e.g., mutexes, locks, condition variables).

In addition, the standard library supports futures to enable a style of concurrency without explicit use of
threads and locks. For example:

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 20

double comp(vector<double>& v) // spawn many tasks
{
 auto sz = v.size();

 auto f0 = std::async(std::accumulate, v.begin(), v.begin()+sz/4, 0.0);
 auto f1 = std::async(std::accumulate, v.begin()+sz/4, v.begin()+sz/2, 0.0);
 auto f2 = std::async(std::accumulate, v.begin()+sz/2, v.begin()+sz*3/4, 0.0);
 auto f3 = std::async(std::accumulate, v.begin()+sz*3/4, v.end(), 0.0);

 return f0.get()+f1.get()+f2.get()+f3.get();
}

Here, the “thread launcher” std::async launches threads as needed to evaluate std::accumulate. Each
call of async returns a handle, called a future, from which the result can be obtained by a call of get(). If
a task launched by async hasn’t completed by the call of get(), the calling thread waits. This
programming model is much cleaner than the more general threads-and-locks model for the
independent tasks for which it is intended.

Type safety
C++ is not guaranteed to be statically type safe. A language designed for general and performance
critical systems programming with the ability to manipulate hardware cannot be. It provides facilities
for manipulating hardware at a low level that can easily be misused to break the type system. Examples
are untagged unions, explicit type conversions (casts), arrays without (guaranteed) range checks, and
the ability to deallocate a free store (heap) object while holding on to a pointer allowing for post-
allocation access. It would be nice to isolate the type violations in a few clearly delimited sections of
code, but history precludes that. Don’t use these facilities outside the implementation of higher-level
facilities (such as vector). The ISO C++ standard library contains a rich set of such abstractions (e.g.,
string, vector, map, set, and thread), so that you don’t have to define them yourself.

Challenges
Obviously, C++ is not perfect. For the future, we face several challenges:

• How to make programmers prefer modern C++ styles over low-level (C-style) code, which is far
more error-prone and harder to maintain, yet no more efficient.

• How to make C++ a better language given the Draconian constraints of C and C++ compatibility.
• How to improve and complete the techniques and models (incompletely and imperfectly)

embodied in C++.

In particular, I would like to:

• Close more type loopholes (in particular, find a way to avoid misuses of delete)

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 21

• Simplify concurrent programming (in particular, provide some higher-level concurrency models
as libraries)

• Simplify generic programming (in particular, introduce simple and effective concepts)
• Simplify programming using class hierarchies (in particular, eliminate use of the visitor pattern)
• Provide better support for combinations of object-oriented and generic programming styles.
• Make exceptions usable for hard-real-time projects (that will most likely be a tool rather than a

language change)
• Find a good way of using multiple address spaces (as needed for distributed computing); this

would most likely involve defining a more general module mechanism that would also address
dynamic linking, and more.

• Provide many more domain-specific libraries
• Develop a more precise and formal specification of C++ (e.g. see [GDR05], [GDR10], [TR12])

Inside C++ is a smaller, cleaner, and even more powerful language struggling to get out. And no, that
language is not C, C#, D, Haskell, Java, ML, Lisp, Scala, Smalltalk, or whatever. Whatever that language is,
it must be better than C++ at light-weight abstraction in even the most demanding infrastructure
applications.

References
1. [ISO11] ISO/IEC JTC1 SC22 WG21 N3092: Programming Languages — C++.
2. [GDR10] Gabriel Dos Reis and Bjarne Stroustrup: General Constant Expressions for System

Programming Languages. SAC-2010. The 25th ACM Symposium On Applied Computing. March
2010.

3. [TR12] Tahina Ramananandro, Gabriel Dos Reis, and Xavier Leroy: A Mechanized Semantics for
C++ Object Construction and Destruction with Applications to Resource Management. In 39th
Symposium on Principles of Programming Languages 2012. Philadelphia (Pennsylvania), USA;
January 2012.

4. [BS04] B. Stroustrup: Abstraction and the C++ machine model. Proc. ICESS'04. December 2004.
5. [BS94] B. Stroustrup: The Design and Evolution of C++. Addison Wesley, ISBN 0-201-54330-3.

March 1994.
6. [BS00] B. Stroustrup: The C++ Programming Language (Special Edition). Addison Wesley.

Reading Mass. USA. February 2000. ISBN 0-201-70073-5.
7. [BS08] B. Stroustrup: Programming -- Principles and Practice Using C++. Addison-Wesley. ISBN

978-0321543721. December 2008.
8. [BS-FAQ] B. Stroustrup: The C++11 FAQ.
9. [BS12] B. Stroustrup: Software Development for Infrastructure. IEEE Computer. January 2012.
10. [TLV95] Todd Veldhuizen: Using C++ template metaprograms. C++ Report, Vol. 7 No. 4 (May

1995).
11. [DG06] Douglas Gregor, Jaakko Jarvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos Reis, Andrew

Lumsdaine: Concepts: Linguistic Support for Generic Programming in C++. OOPSLA'06, October
2006.

Stroustrup Late Draft ETAPS 2012 Keynote

With corrections from the presentation Page 22

12. [GDR06] Gabriel Dos Reis and Bjarne Stroustrup: Specifying C++ Concepts. POPL06. January
2006.

13. [SS11] Andrew Sutton and Bjarne Stroustrup: Design of Concept Libraries for C++. Proc. SLE 2011
(International Conference on Software Language Engineering). July 2011.

14. [SS12] B. Stroustrup and A. Sutton (Editors): A Concept Design for the STL. WG21 Technical
Report N3351=12-0041. Jan, 2012

15. [SM09] Alexander Stepanov and Paul McJones: Elements of Programming. Addison-Wesley
Professional; ISBN-13: 978-0321635372. June 19, 2009.

16. [DWB63] D.W. Barron, et al: The main features of CPL. The Computer Journal. 6 (2): 134. 1963.
17. [TLV93] Tod L. Velthuizen: C++ Templates are Turing Complete. University of Indiana Technical

Report. 2003.
18. [AW12] Anthony Williams: C++ Concurrency in Action – Practical Multithreading. Manning

Publications. ISBN: 1933988770. 2012.
19. [GDR05] G. Dos Reis and B. Stroustrup: A formalism for C++. N1885, Oct. 2005.

	Foundations of C++
	Bjarne Stroustrup
	Texas A&M University
	Abstract
	Introduction
	Ideals
	Memory and Objects
	Compile-time Computation
	Error Handling
	Containers
	Copy and Move
	RAII
	Class Hierarchies
	Algorithms
	Type functions
	Concurrency
	Type safety
	Challenges
	References

