
C and C++: a Case for Compatibility

Bjarne Stroustrup

AT&T Labs
Florham Park, NJ, USA

ABSTRACT

This article presents a case for significantly increasing the degree of compatibility
between C and C++. The ideal proposed is full compatibility. This ideal is not trivially
obvious nor technically easy to achieve. Therefore, arguments against full compatibility
are presented as well as arguments for.

A companion paper [Stroustrup,2002a] provides a ‘‘philosophical’’ view of the C/C++
relationship, and a follow-up article will present some examples of how incompatibilities
might be resolved [Stroustrup,2002c].

1 Languages and Communities

Modern C [C89] [C99] and C++ [C++98] are sibling languages [Stroustrup,2002] [Stroustrup,2002a]
descended from Classic C [Kernighan,1978]. In many people’s minds they are (wrongly, but understand-
ably) fused into the mythical C/C++ programming language. There is no C/C++ language, but there is a
C/C++ community. The primary aim of this article is to examine how the future evolution of C and C++
can best serve that community. My claim is that a significant increase in the degree of C/C++ compatibility
best serves the interests of the C/C++ community and that the ideal is full C/C++ compatibility.

What is the C/C++ community? Millions of programmers use C and/or C++ so any individual and any
organization necessarily has an incomplete picture of the situation and often a biased one. Consider for a
moment three groups:

[1] programmers who use C only
[2] programmers who use C++ only
[3] programmers who use both C and C++

Within each group, we can again look at a multitude of classifications. For example, students, teachers,
occasional programmers, games programmers, builders of large systems, embedded systems programmers,
scientific/numeric programmers, builders of small commercial applications, programmers with a great need
for portability, builders of applications embedded in large commercial frameworks, software tool builders,
programmers of large infrastructure applications, etc. It is hard to place an individual in a single category.
Importantly, many programmers belong to several of these groups and subgroups during a career, even if
they are currently comfortable in some single category.

Are there people who use C++ and never C? Of course there are many C++ programmers who never
compiled a C source file, but how many C++ programs don’t call a C library? If a C library is used
directly, the programmer must understand the constructs appearing in its header files. Even if C code is
used only indirectly, some aspects of C must often be taken into account, such as C’s use of m ma al ll lo oc c()
rather than n ne ew w, the use of arrays rather than C++ standard library containers, and the absence of exception
handling. The use a C in one part of a program often affects other parts of the program, so that a C++ pro-
grammer must be aware of C. And of course, the C++ standard library includes the C89 standard library. It
is only a slight exaggeration to say that all C++ programmers are C programmers.

On the other hand, there are C programmers who never use C++. This is obviously true for program-
mers who – especially in the embedded systems community – work on a platform for which no C++ com-
piler exist. There are fewer such platforms than there used to be, though, and not all of those support ISO

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002



- 2 -

Standard C89, let alone the new features introduced by the C99 standard. Also many programmers work
with C programs that never call a C++ library. However, many (most?) C programmers occasionally use
C++ directly and many rely on C++ libraries. In those cases, the C programmer must be aware of C++ in
the same way as a C++ programmer must be aware of C.

Therefore, my view of compatibility is based on the assumption that most C and C++ programmers are
– at least occasionally – part of a community of C and C++ programmers, rather than part of a C-only or
C++-only community distinct from the majority C/C++ community. Similarly, most C and C++ compiler,
library, and tools providers supply the C/C++ community. There are clear exceptions to this, such a vendor
of C-only tools for the embedded systems market. However, I consider the C/C++ community central to
any discussion of C and C++.

2 Red Herrings

Consider first some statements that often confound and inflame debates about C/C++ compatibility. What
they have in common is that they – sometimes subtly and indirectly – mischaracterize one or both of the
languages, thus diverting the debate from compatibility to a discussion about the value of some aspect of
one language or the other. These statements are divisive and often irrelevant because compatibility is valu-
able even if some individual languages features are undesirable. They should be discussed, though, because
they are inevitable and have some basis in reality.

‘‘C++ is object-oriented, I don’t like object-oriented programming, so I have no use for C++’’ – This
statement ignores the large parts of C++ that are not there to support OOP (in this context most often inter-
preted as programming using class hierarchies), such as stronger type checking, c co on ns st t in constant expres-
sions, n ne ew w and d de el le et te e, function overloading, and templates. C++ supports OO, but it makes no attempts to
impose that style. A significant part of C++’s success comes from not abandoning traditional C styles of
programming where they are considered appropriate. In particular, suggesting the greatest possible degree
of C/C++ compatibility is (emphatically) not suggesting that every program should be structured as a set of
class hierarchies.

‘‘I don’t do low-level programming, so I have no use for C’’ – This would have been a strong argument
had C++ been consistently used as a high-level language only. However, most major C++ programs have
components that simply couldn’t be written in C++ had C++ not supported efficient close-to-the-hardware
programming. Many of these facilities are similar to or identical to what C offers. After all, C++ was
deliberately designed to support C-style low-level programming.

‘‘I just need a simple language’’ – We all do. However, we need a language that is simple for what we
do. Different people have significantly different needs and significantly different opinions on what makes a
language simple. Neither C nor C++ can be considered simple without fairly contorted explanations and
apologetic references to history. Simplicity in any abstract or absolute sense is not among the reasons for
the success of C and C++, and neither C nor C++ will become any simpler in the future. The real question
is whether C and C++ users have to deal with convergent or divergent evolution of these languages. Some
people use ‘‘a simple language’’ to mean C, which is clearly a simpler language than C++. However, there
is no reason to believe that the simplest expression of a given problem will use all the facilities of C. Nor is
there any reason to believe that the set of facilities providing the simplest, most elegant, and most efficient
solution will come from C only. One result of C++ being a larger language is that we can often express a
simpler solution for a given problem using its facilities that is possibly using C only.

‘‘But we don’t need those features’’ – This argument is often heard from both C and C++ proponents.
Typical examples of features mentioned as ‘‘not wanted’’ are casts and virtual functions. No individual
programmer needs every feature of C or C++ every day or in every project. However, the set of features
needed by an organization or by a programmer over the time span of a few years start to approach the set of
features provided. For C++, this is particularly true when you take into account the facilities used by devel-
opers of sophisticated libraries. Also, essentially all programmers wish for ‘‘just one little extension, well
maybe two’’, and often they have a good reason.

‘‘C++ is too slow’’ – There are C++ libraries that are slow and/or take up too much space. However,
this is not an inherent property of the C++ language or of the current implementations of C++. You have
slow and bloated libraries in any language, including C. When I hear ‘‘the efficiency argument’’, I confi-
dently suggest measurements. Generally, C++ is fast enough for high-level features to be used in applica-
tions demanding high performance (such as, classes and templates in matrix applications competing with

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002



- 3 -

Fortran [Blitz++] [MTL] [POOMA]). When they are not, we can always do as well in C++ as we could in
C by using the low-level features shared with C.

‘‘C and C++ are fundamentally different languages’’ – This argument is either a troll or a statement
from someone with a very narrow notion of ‘‘fundamentally different’’. The differences in the parts of the
languages supporting traditional C programming are minor, non-fundamental, and arose from ‘‘historical
accident’’ [Stroustrup,2002] [Stroustrup,2002a]. For a really different language, have a look at just about
any language that isn’t C or C++, such as ML, Python, Smalltalk, Ada, Prolog, or Scheme.

‘‘C++ would be much better if it wasn’t for C compatibility’’ – Some improvements could probably be
made to C++ if C compatibility wasn’t an issue, C-style casts, narrowing conversions, and the structure tag
namespace spring to mind. However, even if C and C++ each go its own way, there already exist so much
C++ code that a thorough cleanup is impossible. And anyway, the highest degree of C/C++ compatibility
that don’t interfere with C++’s abstraction mechanisms is C++ a design aim. The opposite claim ‘‘C would
be much better if it wasn’t for C++ compatibility’’ has been made, but far less frequently. After all, the
parts of C borrowed from C++ are far fewer and less central to C than the C parts are to C++.

‘‘C is simpler than C++, so C compilers are better than C++ compilers’’ – This is no longer true for
the major C++ suppliers. Their C and C++ compilers are different options on the same compiler, relying on
the same optimizers, linkers, etc. This ‘‘simpler compiler’’ argument can be a valid argument in markets
where no C++ compiler exists, but with quality commercial and free C++ front ends available and back-
ends largely language neutral, this is less of a concern than it once were.

‘‘C is small and understandable, C++ isn’t’’ – C is smaller than C++ and easier to learn if by learning
you mean gaining an understanding of most language features. However C is not small; old-times tend to
forget their initial efforts and to seriously underestimate how much has been added. The C99 standard is
550 pages long. Few people understand all of C. Fortunately, like for C++, few people need to. What
takes extra time learning C++ compared to learning C is primarily learning new programming techniques.
If you know object-oriented programming or generic programming, learning the C++ facilities is relatively
easy. If not, learning those new programming techniques using C++ can decrease the total learning time
compared to using C. It is relatively easy to learn a useful amount of C++, even compared to learning suffi-
cient C to complete similar tasks [Stroustrup,1999]. C is not the ideal sub-set of C++ from a
teaching/learning perspective, nor from a utility or efficiency point of view. Only a lack of compatibility
stops people from choosing more ideal subsets.

‘‘If you want C++ features, just use C++’’ – For many programmers, this misses the point. They can’t
just pick and choose among languages based on the need of a feature or two. Usually a language is chosen
for a project, and most often that language isn’t changed out of fear of real and imagined conversion prob-
lems. One of the key problems with incompatibilities – even ones that don’t reflect differences in basic
functionality – is that they provide a barrier to experimentation and to evolution of programs. Often, a lan-
guage is chosen for a project based on little knowledge of the future task, mostly on a couple of program-
mers’ previsous experience, and on what happens to be available. However, because of incompatibilities,
that choice is still binding for different programmers years later after all the tools and even the language
standards have changed.

3 Benefits of C/C++ Compatibility

Giving specific arguments for compatibility is hard. In the absence of specific arguments against, compati-
bility is obviously preferable to incompatibility. Logically, is the task of whoever proposes an incompati-
bility to demonstrate its value. However, we don’t have a clean slate. C is now about 28 years old, and
C++ about 18 years. History is important, and increasing the degree of compatibility implies cost and so
requires argument. Therefore, it is worth stating the benefits of compatibility in the context of C and C++
as they are today.

The basic argument for compatibility is that it maximizes the community of contributors. Each dialect
and incompatibility limits the

[1] market for vendors/suppliers/builders
[2] set of libraries and tools for users
[3] set of collaborators (suitable employees, students, consultants, experts, etc.) for projects

A larger community is a disproportionate advantage. For example, a community of size N provides more
than twice the benefits of a community of size N/2. The reason is better communication† and less

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002



- 4 -

replicated work.
C and C++ are clearly closely related historically, but why should we look to C/C++ compatibility for bene-
fits? After all, we don’t worry about C/Fortran compatibility or C++/Java compatibility. The difference is
that C and C++ has a huge common subset and there exist a C/C++ community, sharing

[1] fundamental concepts and constructs leading to shared teaching and learning,
[2] libraries based on common declarations and data layout, and
[3] tools, including compilers

Once you know C or C++, you know a significant part of the other language. With a few exceptions, the
statement and expression syntax, the basic types, the semantics, and the ways of composing programs out
of functions and translation units are shared. So are many basic programming techniques. This commonal-
ity is more than skin deep; it is not just a syntactic similarity hiding major underlying differences. If some-
thing looks the same, it usually means the same, has the same basic performance characteristics, and can be
used unchanged in or from the other language. Features that are similar, but different, in each language
(such as v vo oi id d*, b bo oo ol l, and e en nu um me er ra at ti io on ns s [Stroustrup,2002a]) are a burden for teachers and students. For
novices, the differences magnify as obstacles to understanding and give raise to myths about their origins
and purposes.

These problems persists beyond the initial learning. For maintenance programmers, each difference is
yet another thing for the programmer to keep in mind and a source of errors. For library builders, differ-
ences require decisions to be made about which language and dialect should be used for implementation,
and creates a need for multiple interfaces (or a common interface using minimal features only) to support
several languages and dialects. For tools builders, including compiler writers, each incompatible feature
force a special case in the implementation, and often a compiler option for its control.

The basic advantage of compatibility is the absence of such problems. Each incompatibility adds a bur-
den and decrease sharing. For the individual and for organizations, compatibility offers a larger universe
for experimentation and for the selection of tools, language facilities, libraries, literature, and techniques.

3.1 Benefits for C-only Programmers
There are benefits from C/C++ compatibility for C programmers who rarely or even never use C++:

[1] Being part of a larger community implies that more resources are available for tools, compilers,
magazines, textbooks, etc. For example, optimizers are typically shared by C and C++ compilers. By
serving the union of C and C++ programmers on a given platform a compiler group can afford to
provide more advanced optimizations, better debuggers, etc.

[2] The C/C++ community has a larger ‘‘mind share’’ than C alone. This implies that C is taken more
serious in planning and teaching that it would have been in the absence of C++. The larger commu-
nity also adds to the richness of the intellectual climate.

[3] On most major platforms, C programs can and usually do benefit from being able to call libraries
written in C++ (without additional call overhead or data layout conversion).

On the other hand, C/C++ incompatibilities impose a burden on tools and library implementers, who with-
out actually using C++ wants to benefit from users in the C++ community. To allow a library to be used in
both C and C++ programs, an implementer needs to know what constructs can be safely used in interfaces
(for example, don’t use a C++ keyword such as n ne ew w as a struct member, and don’t use a name from a stan-
dard C99 header, such as c cs si in n as a global name). To allow an implementation to be compiled as either C or
C++ even more care needs to be taken, such as remembering to cast the result of m ma al ll lo oc c() to the appropri-
ate type.

There are people who believe that if C++ would just go away, all the C++ programmers would become
C programmers and the C++ libraries would become C libraries so that C++ doesn’t add to the size of the
C/C++ community. Some people hold similarly unrealistic views on C from the C++ perspective. Neither
of the two languages will go away, and the shared community is a source of strength to both languages.

__________________
† This is sometimes called Metcalfe’s law.

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002



- 5 -

4 Benefits from C/C++ Incompatibility

C and C++ are closely related, but distinct languages. What benefits are there from keeping them separate?
The fundamental argument must be that each could be smaller, simpler, and truer to its own principles if
released from the shackles of compatibility. However, despite the popularity of this idea in parts of the C
and C++ communities, it is very hard to apply this argument to C and C++:

[1] History gets in the way of any serious simplification
[2] C++ was specifically designed to – among other things – to be able to serve the same application

domains as C, and in essentially the same ways
[3] The future evolution of C and C++ is constrained by the need for compatibility and the importance

of the C/C++ community.

4.1 Benefits for C++-only Programmers
Beyond the simple advantage of not having to know the C variant of the incompatibilities and not having to
know about the C99 extensions†, benefits of C/C++ incompatibilities are largely hypothetical. It is possible
to imagine improvements in type safety, but compatibility with current C++ makes significant improve-
ments in that direction technically hard. The unchecked nature of arrays is not just ‘‘a C problem’’. I sus-
pect that the best people arguing for 100% type safety can hope for is a dialect (subset) that eliminates
unsafe constructs. However, such a subset would not be C++; it would just be a subset of the language used
by the subset of the community that is in a position to benefit from it.

4.2 Benefits for C-only Programmers
Not having to learn about the C++ variants of the C/C++ incompatibilities and of C++’s major non-C fea-
tures is an advantage†.

In an environment where all resources can be spent on C, without having to share them with a C++ com-
munity, compilers and other tools can be smaller and cheaper to build. In particular, a C compiler front-end
is inherently smaller and potentially faster than a C++ front end. However, that compile-time advantage is
often offset by the need to run more compilations because less errors are caught by the compiler. Also,
environments where ISO Standard C exists alone are few and not characteristic of C programming environ-
ments and communities.

Assuming that C/C++ compatibility can be disregarded, designers, such as tools builders and the C stan-
dards committee benefits from a simpler decision process. In theory, at least, this can translate into advan-
tages for the C-only community.

By ignoring C++, C could be extended or modified in a direction deliberately different from C++, elimi-
nating the possibility of C/C++ compatibility and fracturing the C/C++ community. This could possibly
benefit some C-only programmers but would impose a burden on the larger C/C++ community. Where C
and C++ provide distinct language or library solutions to similar problems, that burden becomes significant.

In theory, at least, and sometimes in practice, the C community values stability higher than the C++
community. Ignoring C++ for the further evolution of C, could therefore be a benefit. However, with C++
standardized and many millions of lines of production code to protect, the attitude to backwards compatibil-
ity in the C++ community is approaching that of C. Only by essentially stopping the evolution of C would
this benefit become significant.

5 What Should be Done?

What can be done about the C/C++ incompatibilities? What should be done? I hear four basic answers:
[1] Nothing, the incompatibilities are good for you: I simply don’t believe that, having never seen a

piece of code that benefited from an incompatibility in any fundamental way. However, if enough
people are of that opinion, the C and C++ committees will proceed to reduce the area of compatibil-
ity and to provide competing incompatible additions. That would destroy the C/C++ community.
Programmers would increasingly face a choice between a language rich in built-in facilities and a
language rich in abstraction facilities. Naturally, both language communities would be busy com-
pensating for their weaknesses by providing libraries, which in turn would further increase the areas

__________________
† Assuming that not knowing major features of closely related languages can be an advantage, which I doubt.

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002



- 6 -

of incompatibility. The primary beneficiaries of this would be languages outside the C/C++ family.
[2] Nothing, it’s too late: Given that I consider the current level of C/C++ incompatibilities both a major

problem and not rooted in fundamental technical or philosophical reasons, I’m most reluctant to
accept that nothing can be done. However, it is possible that changes really are infeasible today. In
that case, we can strive to minimize future incompatibilities and to remove incompatibilities where
opportunity arises. More likely, people will draw the conclusion that compatibility is already lost so
compatibility concerns should not be allowed to complicate the design of new language features and
libraries. In particular, there will be pressure for each language to provide competing, incompatible,
versions of popular facilities from the other.

[3] Remove all incompatibilities: This is my ideal. This is what I believe to be the best long-term solu-
tion for the C/C++ community. We ought to try for that. Clearly, this would involve changes to
both languages and compromises would have to be crafted to minimize the impact on users of both
languages. Silent changes – that is, changes that are not easily diagnosed by a compiler – should be
minimized. Wherever possible, the compromises should be crafted to increase the consistency of
the resulting set of features and to simplify the language rules. It will be difficult to remove all
incompatibilities. However, the amount of work required from the C/C++ community to reach com-
patibility will be far less that that required from it to live with increasingly incompatible languages.

[4] Remove most of the incompatibilities; removing all is impossible: Unfortunately, we can’t always
get all we want. In that case, we should figure out which incompatibilities can be removed and get
rid of those. We should also consider ways of improving interoperapility, especially among
libraries, in cases where source code compatibiliyi were deemed infeasible. After that exercise,
maybe the remaining incompatibilities won’t look so impossible to remove or to live with, and
maybe the exercise would discourage the growth of new incompatibilities.

I clearly value C/C++ compatibility highly. Many many years ago, John Bentley suggested that C and C++
be gradually merged and that each year the size of the ++ in C++ should be reduced slightly until only the C
was left. That was a good idea, but it didn’t happen. However, we are now at a stage in the development of
C and C++, where the long-standing semi-official C++ policy of ‘‘as close to C and possible, but no closer’’
could become a policy of full compatibility provided the C and C++ communities so decided. If this oppor-
tunity is missed, the languages will embark on divergent evolutions and the C/C++ community will fracture
into many parts.

What would be the result of a systematic process of increasing compatibility? A single language called
C or C++? Possibly, I consider it more likely that it would be a language called C++ with a precisely-
specified subset called C. I’m no fan of language subsetting, but I do respect the people who insist that
something smaller than C++ is important in some application areas and in some communities. If nothing
else, that approach would avoid an emotional discussion about naming.

The next article in this series [Stroustrup,2002c] will make some concrete suggestions as to how C and
C++ might be changed to approach full compatibility.

6 References

[Blitz++] http://oonumerics.org/blitz/.
[C89] ISO/IEC 9899:1990, Programming Languages – C.
[C99] ISO/IEIC 9899:1999, Programming Languages – C.
[C++98] ISO/IEC 14882, Standard for the C++ Language.
[Kernighan,1978] Brian Kernighan and Dennis Ritchie: The C Programming Language. Prentice-Hall,

Englewood Cliffs, NJ. 1978. ISBN 0-13-110163-3.
[MTL] http://www.osl.iu.edu/research/mtl.
[POOMA] http://www.acl.lanl.gov/Pooma.
[Stroustrup,1999] Bjarne Stroustrup: Learning Standard C++ as a New Language. The C/C++ Users

Journal. May 1999. Also in CVU Vol 12 No 1. January 2000.
[Stroustrup,2002] Bjarne Stroustrup: Sibling Rivalry: C and C++. AT&T Labs - Research Technical

Report TD-54MQZY, January 2002.
http://www.research.att.com/˜bs/sibling_rivalry.pdf.

[Stroustrup,2002a] Bjarne Stroustrup: C and C++: Siblings. The C/C++ Journal.
[Stroustrup,2002c] Bjarne Stroustrup: C and C++: Case Studies in Compatibility. The C/C++ Journal.

Part of a three-article series from "The C/C++ Users Journal" July, August, and September 2002


