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Abstract

The high degree of complexity and autonomy of future robotic
space missions, such as Mars Science Laboratory (MSL), poses
serious challenges in assuring their reliability and efficiency. Pro-
viding fast and safe concurrent synchronization is of critical im-
portance to such autonomous embedded software systems. The ap-
plication of nonblocking synchronization is known to help elimi-
nate the hazards of deadlock, livelock, and priority inversion. The
nonblocking programming techniques are notoriously difficult to
implement and offer a variety of semantic guarantees and usabil-
ity and performance trade-offs. The present software development
and certification methodologies applied at NASA do not reach the
level of detail of providing guidelines for the design of concurrent
software. The complex task of engineering reliable and efficient
concurrent synchronization is left to the programmer’s ingenuity.
A number of Software Transactional Memory (STM) approaches
gained wide popularity because of their easy to apply interfaces,
but currently fail to offer scalable nonblocking transactions. In this
work we provide an in-depth analysis of the nonblocking syn-
chronization semantics and their applicability in mission critical
code. We describe a generic implementation of a methodology for
scalable implementation of concurrent objects. Our performance
evaluation demonstrates that our approach is practical and outper-
forms the application of nonblocking transactions by a large fac-
tor. In addition, we apply our Descriptor-based approach to pro-
vide a solution to the fundamental ABA problem. Our ABA pre-
vention scheme, called the A\ approach, outperforms by a large
factor the use of garbage collection for the safe management of
each shared location. It offers speeds comparable to the applica-
tion of the architecture-specific CAS2 instruction used for version
counting. The AJ approach is an ABA prevention technique based
on classification of concurrent operations and 3-step execution of
a Descriptor object. A practical alternative to the application of
CAS?2 is particularly important for the engineering of embedded
systems.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features
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1. Introduction

Robotic space mission projects, such as Mars Science Laboratory
(MSL) [29], pose the challenging task of engineering some of the
most complex real-time embedded software systems. The notion
of concurrency is of critical importance for the design and imple-
mentation of such systems. The present software development and
certification protocols (such as [26]) do not reach the level of de-
tail of offering guidelines for the engineering of reliable concur-
rent software. In this work, we provide a detailed analysis of the
state-of-the-art nonblocking programming techniques and derive a
generic implementation for scalable lightweight concurrent objects
that can help in implementing efficient and safe concurrent interac-
tions in mission critical code.

1.1 Nonblocking Objects

The most common technique for controlling the interactions of con-
current processes is the use of mutual exclusion locks. A mutual
exclusion lock guarantees thread-safety of a concurrent object by
blocking all contending threads trying to access it except the one
holding the lock. In scenarios of high contention on the shared data,
such an approach can seriously affect the performance of the sys-
tem and significantly diminish its parallelism. For the majority of
applications, the problem with locks is one of difficulty of provid-
ing correctness more than one of performance. The application of
mutual exclusion locks poses significant safety hazards and incurs
high complexity in the testing and validation of mission-critical
software. Locks can be optimized in some scenarios by utilizing
fine-grained locks or context-switching. Because of resource limi-
tations, optimized lock mechanisms are not a desirable alternative
for flight-qualified hardware [24]. Even for efficient locks, the in-
terdependence of processes implied by the use of mutual exclusion
introduces the dangers of deadlock, livelock, and priority inversion.
The incorrect application of locks is hard to detect with the tradi-
tional testing procedures and a program can be deployed and used
for a long period of time before the flaws become evident and even-
tually cause anomalous behavior.

To achieve higher safety and gain performance, we suggest the
application of nonblocking synchronization. A concurrent object is
nonblocking if it guarantees that some process in the system will
make progress in a finite amount of steps [16]. An object that guar-
antees that each process will make progress in a finite number of
steps is defined as wait-free. Obstruction-freedom [18] is an al-
ternative nonblocking condition that ensures progress if a thread



eventually executes in isolation. It is the weakest nonblocking prop-
erty and obstruction-free objects require the support of a contention
manager to prevent livelocking.

1.2 Impact for Space Systems

Modern robotic space exploration missions, such as Mars Science
Laboratory [29], are expected to embed a large array of advanced
components and functionalities and perform a complex set of sci-
entific experiments. The high degree of autonomy and increased
complexity of such systems pose significant challenges in assur-
ing the reliability and efficiency of their software. A survey on the
challenges for the development of modern spacecraft software by
Lowry [24] reveals that in July 1997 the Mars Pathfinder mission
experienced a number of anomalous system resets that caused an
operational delay and loss of scientific data. The follow-up analy-
sis identified the presence of a priority inversion problem caused
by the low-priority meteorological process blocking the the high-
priority bus management process. The software engineers found
out that it would have been impossible to detect the problem with
the black box testing applied at the time. A more appropriate pri-
ority inversion inheritance algorithm had been ignored due to its
frequency of execution, the real-time requirements imposed, and
its high cost incurred on the slower flight-qualified computer hard-
ware. The subtle interactions in the concurrent applications of the
modern aerospace autonomous software are of critical importance
to the system’s safety and operation. The presence of a large num-
ber of concurrent autonomous processes implies an increased vol-
ume of interactions that are hard to predict and validate. Allowing
fast and reliable concurrent synchronization is of critical impor-
tance to the design of autonomous spacecraft software.

1.3 Mission Data System

Mission Data System (MDS) [9] is the Jet Propulsion Laboratory’s
framework for designing and implementing complete end-to-end
data and control autonomous flight systems. The framework fo-
cuses on the representation of three main software architecture
principles:

(1) System control: a state-based control architecture with explicit
representation of controllable states [8].

(2) Goal-oriented operation: control intent is expressed by defin-
ing a set of goals as part of a goal network [1].

(3) Layered data management: an integrated data management and
transport protocols [30].

In MDS a state variable provides access to the data abstractions rep-
resenting the physical entities under control over a continuous pe-
riod of time, spanning from the distant past to the distant future. As
explained by Wagner [30], the implementation’s intent is to define
a goal timeline overlapping or coinciding with the timeline of the
state variables. Computing the guarantees necessary for achieving
a goal might require the lookup of past states as well as the compu-
tation of projected future states. MDS employs the concept of goals
to represent control intent. Goals are expressed as a set of temporal
constraints [5]. Each state variable is associated with exactly one
state estimator whose function is to collect all available data and
compute a projection of the state value and its expected transitions.
Control goals are considered to be those that are meant to control
external physical states. Knowledge goals are those goals that rep-
resent the constraints on the software system regarding a property
of a state variable. Not all states are known at all time. The most
trivial knowledge goal is the request for a state to be known, thus
enabling its estimator. A data state is defined as the information
regarding the available state and goal data and its storage format
and location. The MDS platform considers data states an integral

part of the control system rather than a part of the system under
control. There are dedicated state variables representing the data
states. In addition, data states can be controlled through the defi-
nition of data goals. A data state might store information such as
location, formatting, compression, and transport intent and status
of the data. A data state might not be necessary for every state vari-
able. In a simple control system where no telemetry is used, the
state variable implementation might as well store the information
regarding the variable’s value history and its extrapolated states.

At its present state of design and implementation, MDS does not
provide a concurrent synchronization mechanism for building safer
and faster concurrent interactions. Elevating the level of efficiency
and reliability in the execution of the concurrent processes is of
particular significance to the implementation of the System Control
and the Data Management modules of MDS. It is the goal of this
paper to illustrate the trade-offs in the semantics and application of
some advanced nonblocking techniques and analyze their applica-
bility in MDS. The most ubiquitous and versatile data structure in
the ISO C++ Standard Template Library (STL) [28] is vector, offer-
ing a combination of dynamic memory management and constant-
time random access. Because of the vector’s wide use and chal-
lenging parallel implementation of its nonblocking dynamic oper-
ations, we illustrate the efficiency of each nonblocking approach
discussed in this work with respect to its applicability for the de-
sign and implementation of a shared nonblocking vector. A number
of pivotal concurrent applications in the Mission Data System [20]
framework employ a shared STL vector (in all scenarios protected
by mutual exclusion locks). Such is the Data Management Service
library described by Wagner in [30].

2. Nonblocking Data Structures

Lock-free and wait-free algorithms exploit a set of portable atomic
primitives such as the word-size Compare-and-Swap (CAS) in-
struction [13]. The design of nonblocking data structures poses sig-
nificant challenges and their development and optimization is a cur-
rent topic of research [12], [16]. The Compare-And-Swap (CAS)
atomic primitive (commonly known as Compare and Exchange,
CMPXCHG, on the Intel x86 and Itanium architectures [21]) is a CPU
instruction that allows a processor to atomically test and modify
a single-word memory location. CAS requires three arguments: a
memory location (L;), an old value (A;), and a new value (B;).
The instruction atomically exchanges the value stored at L; with
B;, provided that L;’s current value equals A;. The result indicates
whether the exchange was performed. For the majority of imple-
mentations the return value is the value last read from L; (that is
B; if the exchange succeeded). Some CAS variants, often called
Compare-And-Set, have a return value of type boolean. The hard-
ware architecture ensures the atomicity of the operation by apply-
ing a fine-grained hardware lock such as a cache or a bus lock (as is
the case for IA-32 [21]). The application of a CAS-controlled spec-
ulative manipulation of a shared location (L;) is a fundamental pro-
gramming technique in the engineering of nonblocking algorithms
[16] (an example is shown in Algorithm 1). In our pseudocode we

Algorithm 1 CAS-controlled speculative manipulation of L;

1: repeat

2: value_type A;=L;"

3: value_type B; = fComputeB
4: until CAS(L;, A;, B;) == Bi

use the symbols ~, &, and . to indicate pointer dereferencing, ob-
taining an object’s address, and integrated pointer dereferencing
and field access. When the value stored at L; is the control value
of a CAS-based speculative manipulation, we call L; and L; " con-
trol location and control value, respectively. We indicate the con-



trol value’s type with the string value_type. The size of value_type
must be equal or less than the maximum number of bits that a hard-
ware CAS instruction can exchange atomically (typically the size
of a single memory word). In the most common cases, value_type
is either an integer or a pointer value. In the latter case, the imple-
mentor might reserve two extra bits per each control value and use
them for implementation-specific value marking [12]. This is pos-
sible if we assume that the pointer values stored at L; are aligned
and the two low-order bits have been cleared. In Algorithm 1, the
function fComputeB yields the new value B;. Typically, B; is a
value directly derived from the function’s arguments and is not de-
pendent on the value stored at the control location. A routine where
B;’s value is dependent on A; would be a read-modify routine in
contrast to the modify routine shown in Algorithm 1.

Linearizability [16] is a correctness condition for concurrent ob-
jects: a concurrent operation is linearizable if it appears to execute
instantaneously in a given point of time 7;;,, between the time T;p.
of its invocation and the time 7,4 of its completion. The literature
often refers to 7, as a linearization point. The implementations
of many nonblocking data structures require the update of two or
more memory locations in a linearizable fashion [4], [12]. The en-
gineering of such operations (e.g. push_back and resize in a shared
dynamically resizable array) is critical and particularly challenging
in a CAS-based design. Harris et al. propose in [14] a software im-
plementation of a multiple-compare-and-swap (M CAS) algorithm
based on CAS. This software-based M CAS algorithm has been ap-
plied by Fraser in the implementation of a number of lock-free con-
tainers such as binary search trees and skip lists [11]. The cost of
the M CAS operation is expensive requiring 2M + 1 CAS instruc-
tions. Consequently, the direct application of the M CAS scheme
is not an optimal approach for the design of lock-free algorithms.
A common programming technique applied for the implementation
of the complex nonblocking operations is the use of a Descriptor
Object (Section 2.1).

A number of advanced Software Transactional Memory (STM)
libraries provide nonblocking transactions with dynamic lineariz-
able operations [7], [27]. Such transactions can be utilized for the
design of nonblocking containers [27]. As our performance evalu-
ation demonstrates, the high cost of the extra level of indirection
and the conflict detection and validation schemes in STM systems
does not allow performance comparable to that of a hand-crafted
lock-free container that relies solely on the application of portable
atomic primitives. Sections 2.4 and 2.7 describe in detail the imple-
mentation of a nonblocking shared vector using CAS-based tech-
niques and STM, respectively. Section 3 provides analysis of the
suggested implementation strategies and discusses the performance
evaluation of the two approaches.

2.1 The Descriptor Object

The consistency model implied by the linearizability requirement is
stronger than the widely applied Lamport’s sequential consistency
model [23]. According to Lamport’s definition, sequential consis-
tency requires that the results of a concurrent execution are equiv-
alent to the results yielded by some sequential execution (given the
fact that the operations performed by each individual processor ap-
pear in the sequential history in the order as defined by the pro-
gram). The pseudocode in Algorithm 2 shows the two-step execu-
tion of a Descriptor Object. In our nonblocking design, a Descriptor
Object stores three types of information:

(a) Global data describing the state of the shared container (vJ),
e.g. the size of a dynamically resizable array [4].

(b) A record of a pending operation on a given memory location.
We call such a record requesting an update at a shared location
L; from an old value, old_val, to a new value, new_val, a Write

Descriptor (wd). The shortcut notation we use is wd @ L; :
old_val — new_val. The fields in the Write Descriptor Object
store the target location as well as the old and the new values.

(c) A boolean value indicating whether wd contains a pending
write operation that needs to be completed.

The use of a Descriptor allows an interrupting thread help the
interrupted thread complete an operation rather than wait for its
completion. As shown in Algorithm 2, the technique is used to
implement, using only two CAS instructions, a linearizable update
of two memory locations: 1. a reference to a Descriptor Object (data
type pointer to d stored in a location L;) and 2. an element of type
value_type stored in L;. In Step 1, Algorithm 2, we perform a CAS-
based speculation of a shared location L that contains a reference
to a Descriptor Object. The purpose of this CAS-based speculation
in Step 1 is to replace an existing Descriptor Object with a new one.
Step 1 executes in the following fashion:

1. we read the value of the current reference to J stored in L (line
3);

2. if the current § object contains a pending operation, we need to
help its completion (lines 4-5);

3. we record the current value, A;, at L; (line 7) and compute the
new value, B;, to be stored in L; (line 8);

4. a new wd object is allocated on the heap, initialized (by calling
fus), and its fields Target, OldValue, and NewValue are set
(lines 9-12);

5. any additional state data stored in a Descriptor Object must be
computed (by calling f,s). Such data might be a shared element
or a container’s size that needs to be modified (line 13);

6. a new Descriptor Object is initialized containing the new Write
Descriptor and the new descriptor’s data. The new descriptor’s
pending operation flag (WDpending) is set to true (lines 14-15);

7. we attempt a swap of the old Descriptor Object with the new one
(line 16). Should the CAS fail, we know that there is another
process that has interrupted us and meanwhile succeeded to
modify Ls and progress. We need to go back at the beginning
of the loop and repeat all the steps. Should the CAS succeed, we
proceed with Step 2 and perform the update at L;.

The size of a Descriptor Object is larger than a memory word. Thus,
we need to store and manipulate a Descriptor Object through a
reference. Since the control value of Step 1 stores a pointer to a
Descriptor Object, to prevent ABA (Section 2.4.1), all references
to descriptors must be memory managed by a safe nonblocking
garbage collection scheme. We use the prefix p for all variables
that require safe memory management. In Step 2 we execute the
Write Descriptor, WD, in order to update the value at L;. Any
interrupting thread (after the completion of Step 1) detects the
pending flag of wd and, should the flag’s value be still positive,
it proceeds to executing the requested update wé @ L; : A; — B;.
There is no need to perform a CAS-based loop and the execution
of a single CAS execution is sufficient for the completion of wd.
Should the CAS from Step 2 succeed, we have completed the two-
step execution of the Descriptor Object. Should it fail, we know
that there is an interrupting thread that has completed it already.

2.2 Nonblocking Concurrent Semantics

The use of a Descriptor Object provides the programming tech-
nique for the implementation of some of the complex nonblocking
operations in a shared container, such as the push_back, pop_back,
and reserve operations in a shared vector [4]. The use and execu-
tion of a Write Descriptor guarantees the linearizable update of two
or more memory locations.



Algorithm 2 Two-step execution of a § object

1: Step I: place a new descriptor in L

2: repeat
: 6 nOldDesc = Ls~

4 if OldDesc.WDpending == true then

5: execute 1OldDesc. WD

6: end if

7: value_type A; = L;~

8 value_type B; = fComputeB

9 wIWD = fus5()

10: WD.Target = L;

11: WD.OIdElement = A;

12: WD.NewElement = B;

13: vd DescData = fu,5()

14: & uNewDesc = f5(DescData, WD)

15: uNewDesc.WDpending = true

16: until CAS(Ls, uOldDesc, uNewDesc) == puNewDesc

18: Step 2: execute the write descriptor

19: if uNewDesc. WDpending then

20: CAS(WD.Target, WD.OldElement, WD.NewElement) ==
WD.NewElement

21: pNewDesc. WDPending = false

22: endif

Definition 1: An operation whose success depends on the cre-
ation and execution of a Write Descriptor is called an wd-executing
operation.

The operation push_back of a shared vector [4] is an example
of an wd-executing operation. Such wd-executing operations have
lock-free semantics and the progress of an individual operation
is subject to the contention on the shared locations Ls and L;
(under heavy contention, the body of the CAS-based loop from
Step 1, Algorithm 2 might need to be re-executed). For a shared
vector, operations such as pop_back do not need to execute a Write
Descriptor [4]. Their progress is dependent on the state of the
global data stored in the Descriptor, such as the size of a container.

Definition 2: An operation whose success depends on the state
of the v§ data stored in the Descriptor Object is a §-modifying
operation.

A ¢-modifying operation, such as pop_back, needs only up-
date the shared global data (the data of type vd, such as size)
in the Descriptor Object (thus pop_back seeks an atomic update
of only one memory location: Ls). Since an wd-executing opera-
tion by definition always performs an exchange of the entire De-
scriptor Object, every wd-executing operation is also 6-modifying.
The semantics of a §-modifying operation are lock-free and the
progress of an individual operation is determined by the interrupts
by other §-modifying operations. An wé-executing operation is also
d-modifying but as is the case with pop_back, not all §-modifying
operations are wd-executing. Certain operations, such as the ran-
dom access read and write in a vector [4], do not need to access
the Descriptor Object and progress regardless of the state of the de-
scriptor. Such operations are non-d-modifying and have wait-free
semantics (thus no delay if there is contention at Ls).

Definition 3: An operation whose success does not depend on
the state of the Descriptor Object is a non-0-modifying operation.

2.2.1 Concurrent Operations

The semantics of a concurrent data structure can be based on a num-
ber of assumptions. Similarly to a number of fundamental studies in
nonblocking design [16], [12], we assume the following premises:
each processor can execute a number of operations. This establishes
a history of invocations and responses and defines a real-time order
between them. An operation O; is said to precede an operation O2
if O2’s invocation occurs after O;’s response. Operations that do
not have real-time ordering are defined as concurrent. A sequential
history is one where all invocations have immediate responses. A

linearizable history is one where: a. all invocations and responses
can be reordered so that they are equivalent to a sequential history,
b. the yielded sequential history must correspond to the semantic
requirements of the sequential definition of the object, and c. in
case a given response precedes an invocation in the concurrent ex-
ecution, then it must precede it in the derived sequential history. It
is the last requirement that differentiates the consistency model im-
plied by the definition of linearizability with Lamport’s sequential
consistency model and makes linearizability stricter. When two -
modifying operations (Os, and Os,) are concurrent, according to
Algorithm 2, Os, precedes O, in the linearization history if and
only if Os, completes Step 1, Algorithm 2 prior to Os,.

Definition 4: We refer to the instant of successful execution of
the global Descriptor exchange at Ls (line 16, Algorithm 2) as 5.

Definition 5: A point in the execution of a 0 object that deter-
mines the order of an wd-executing operation acting on location L;
relative to other writer operations acting on the same location L;,
is referred to as the \d-point (Txs) of a Write Descriptor.

The order of execution of the AJ-points of two concurrent wd-
executing operations determines their order in the linearization
history. The AJ-point does not necessarily need to coincide with
the operation’s linearization point, 7y;,,. As illustrated in [4], Tyin
can vary depending on the operations’ concurrent interleaving. The
linearization point of a shared vector’s [4] §-modifying operation
can be any of the three possible points: a. some point after 75 at
which some operation reads data form the Descriptor Object, b.
Ts or c. the point of execution of the Write Descriptor, T4 (the
completion of Step 2, Algorithm 2). The core rule for a linearizable
operation is that it must appear to execute in a single instant of
time with respect to other concurrent operations. The linearization
point need not correspond to a single fixed instruction in the body
of the operation’s implementation and can vary depending on the
interrupts the operation experiences. In contrast, the A\J-point of
an wd object corresponds to a single instruction in the objects’s
implementation, thus making it easier to statically argue about an
operation’s correctness. In the pseudo code in Algorithm 2 75 =
Ts.

2.3 Implementation Concerns

We provide a brief summary of the most important implementation
concerns for the practical and portable design of a nonblocking data
container.

2.3.1 Portability

Virtually at the core of every known synchronization technique is
the application of a number of hardware atomic primitives. The se-
mantics of such primitives vary depending on the specific hardware
platform. There are a number of architectures that support some
hardware atomic instructions that can provide greater flexibility
such as the Load-Link/Store Conditional (LL/SC) supported by the
PowerPC, Alpha, MIPS, and the ARM architectures or instructions
that perform atomic writes to more than a single word in mem-
ory, such as the Double-Compare-And-Swap instruction (DCAS)
[6]. The hardware support for such atomic instructions can vastly
simplify the design of a nonblocking algorithm as well as offer im-
mediate solutions to a number of challenging problems such as the
ABA problem. To maintain portability across a large number of
hardware platforms, the design and implementation of a nonblock-
ing algorithm cannot rely on the support of such atomic primitives.
The most common atomic primitive that is supported by a large
majority of hardware platforms is the single-word CAS instruction.
It is not desirable to suggest a CAS2/DCAS-based ABA solution
for a CAS-based algorithm, unless the implementor explores the
optimization possibilities of the algorithm upon the availability of
CAS2/DCAS.



2.3.2 Linearizability Guarantee

In a CAS-based design, a major difficulty is meeting the lineariz-
ability requirements for operations that require the update of more
than a single-word in the system’s shared memory. To cope with
this problem, it is possible to apply a combination of a number of
known techniques:

a. Extra Level of Indirection: reference semantics [28] must be
assumed in case the data being manipulated is larger than a
memory word or the approach relies on the application of smart
pointers or garbage collection for each individual element in the
shared container.

b. Descriptor Object: a Descriptor stores a record of a pending op-
eration on a given shared memory location. It allows the inter-
rupting threads help the interrupted thread complete an operation
rather than wait for its completion.

c. Descriptive Log: at the core of virtually all Software Transac-
tional Memory implementations, the Descriptive Log stores a
record of all pending reads and writes to the shared data. It is
used for conflict detection, validation, and optimistic specula-
tion.

d. Transactional Memory: a duplicate memory copy used to per-
form speculative updates that are invisible to all other threads
until the linearization point of the entire transaction.

e. Optimisitic Speculation: complex nonblocking operations often
employ optimistic speculative execution in order to carry out
the memory updates on a local or duplicate memory copy and
commit once there are no conflicts with interfering operations. It
is necessary to employ a methodology for unrolling all changes
performed by the speculating operation, should there be conflicts
during the commit phase.

To illustrate the complexity of a nonblocking design of a shared
vector, Table 1 provides an analysis of the number of memory
locations that need to be updated upon the execution of some of
its basic operations.

l H Operations [ Memory Locations l
push_back Vector x Elem — void 2: element, size
pop-back Vector — Elem 1: size
reserve Vector x size.t — Vector n: all elements
read Vector X size.t — Elem none
write Vector X size-t X Elem — Vector 1: element
size Vector — size-t none

Table 1. Vector - Operations

2.3.3 Interfaces of the Concurrent Operations

According to the ISO C++ Standard [22], the STL containers’ in-
terfaces are inherently sequential. The next ISO C++ Standard [2]
is going to include a concurrent memory model [3] and possibly a
blocking threading library. In Table 2 we show a brief overview of
some of the basic operations of an STL vector according to the cur-
rent standard of the C++ programming language. Consider the se-
quence of operations applied to an instance, vec, of the STL vector:
vec[vec.size()-1]; vec.pop_back();. In an environment with con-
current operations, we cannot have the guarantee that the element
being deleted by thepop_back is going to be the element that had
been read earlier by the invocation of operator[]. Such a sequen-
tial history is just one of the several legal sequential histories that
can be derived from the concurrent execution of the above oper-
ations. While the STL interfaces have proven to be efficient and

Operation “ Description

Number of elements in the vector
Number of available memory slots
Allocation of memory with capacity n
true when size = 0

returns the element at position 1
returns the first element

returns the last element

inserts a new element at the tail
removes the element at the tail
modifies the tail, making size = n

size_type size() const

size_type capacity() const

void reserve(size_type n)

bool empty() const

T* operator|] (size_type n) const
T* front()

T* back()

void push_back(const T&)

void pop_back()

void resize(n, t = T())

Table 2. Interfaces of STL Vector

flexible for a large number of applications [28], to preserve the se-
mantic behavior implied by the sequential definitions of STL, one
can either rely on a library with atomic transactions [7], [27] or al-
ternatively define concurrent STL interfaces adequate with respect
to the applied consistency model. In the example we have shown,
it might be appropriate to modify the interface of the pop_back
operation and return the element being deleted instead of the void
return type specified in STL. Such an implementation efficiently
combines two operations: reading the element to be removed from
the container and removing the element. The ISO C++ implementa-
tion of pop_back() returns void so that the operation is optimal (and
does not perform extra work) in the most general case: the dele-
tion of the tail element. Should we prefer to keep the STL standard
interface of void pop_back() in a concurrent implementation, the
task of obtaining the value of the removed element in a concurrent
nonblocking execution might be quite costly and difficult to imple-
ment. By analyzing the shared containers’ usage, we have observed
that combining related operations can deliver better usability and
performance advantages in a nonblocking implementation. Other
possibly beneficial combinations of operations are 1) CAS-based
read-modify-write at location L; that unifies a random access read
and write at location L; and 2) the push_back of a block of tail
elements. Furthermore, as demonstrated by Dechev et al. [5], the
application of static analysis tools such as The Pivot [5] can help in
shifting some part of the concurrent implementation’s complexity
from the run-time of the system to the compile-time program anal-
ysis stage. The Pivot is a compiler-independent platform for static
analysis and semantics-based transformation of the complete ISO
C++ programming language and some advanced language features
proposed for the next generation C++ [2].

2.4 Descriptor-based Shared Vector

In this section we present a brief overview of the most critical lock-
free algorithms employed by a Descriptor-based shared vector (see
[4] for the full set of the operations of the first lock-free dynam-
ically resizable array). To help tail operations update the size and
the tail of the vector (in a linearizable manner), the design presented
in [4] suggests the application of of a helper object, named Write
Descriptor (WD) that announces a pending tail modifications and
allows interrupting threads help the interrupted thread complete its
operations. A pointer to the WD object is stored in the Descriptor
together with the container’s size and a reference counter required
by the applied memory management scheme. The approach avoids
storage relocation and its synchronization hazards by utilizing a
two-level array. Whenever push_back exceeds the current capacity,
a new memory block twice the size of the previous one is added.
The remaining part of this section presents the pseudo-code of the
tail operations (push_back and pop_back) and the random access
operations (read and write at a given location within the vector’s
bounds).

Push_back (add one element to end): The first step is to com-
plete a pending operation that the current descriptor might hold. In



Algorithm 3 push_back vector, elem

1: repeat

2: desceyrrent <— Vector.desc
3: CompleteWrite(vector, desccyrrent-pending)
4:  if vector.memory[bucket] = NULL then
5: AllocBucket(vector, bucket)
6: end if
7. wop «—
new WriteDesc(At(desccyrrent-size), elem, desceyrrent.size)
8: deschext < new Descriptor(desceyrrent.size+1, wop)

9: until CAS(& vector.desc, desceyrrent, d€SCnext)
10: CompleteWrite(vector, descpext.pending)

Algorithm 4 read vector, i

1: return At(vector, i)~

Algorithm 5 write vector, i, elem

1: At(vector, i) = < elem

Algorithm 6 pop_back vector

1: repeat

2: desceyrrent «— Vvector.desc

3 CompleteWrite(vector, desccyrrent-pending)

4 elem « At(vector, desccyrrent.size-1)

5: descpext «— new Descriptor(desccyrrent.size-1, NULL)
6: until CAS(& vector.desc, desceyrrent, deSCnext)

7: return elem

Algorithm 7 CompleteWrite vector, wop

1: if wop.pending then

2: CAS(At(vector, wop.pos), wop.valuegd, wop.valuenew)
3: wop.pending « false
4: endif

case that the storage capacity has reached its limit, new memory is
allocated for the next memory bucket. Then, push_back defines a
new Descriptor object and announces the current write operation.
Finally, push_back uses CAS to swap the previous Descriptor ob-
ject with the new one. Should CAS fail, the routine is re-executed.
After succeeding, push_back finishes by writing the element.

Pop_back (remove one element from end): Unlike push_back,
pop_back does not utilize a Write Descriptor. It completes any
pending operation of the current descriptor, reads the last element,
defines a new descriptor, and attempts a CAS on the descriptor
object.

Non-bound checking Read and Write at position i: The ran-
dom access read and write do not utilize the descriptor and their
success is independent of the descriptor’s value.

2.4.1 The ABA Problem

The ABA problem [25] is fundamental to all CAS-based systems.
The ABA problem is a false positive execution of a CAS-based
speculation on a shared location L; (Algorithm 1). While of a sim-
ple nature and derived from the application of a basic hardware
primitive, the ABA problem’s occurrence is due to the intricate and
complex interactions of the application’s concurrent operations.
The importance of the ABA problem has been reiterated in the re-
cent years with the application of CAS for the development of non-
blocking programming techniques. Avoiding the hazards of ABA
imposes an extra challenge for a lock-free algorithm’s design and
implementation. To the best of our knowledge, the literature does
not offer an explicit and detailed analysis of the ABA problem, its

relation to the most commonly applied nonblocking programming
techniques (such as the use of Descriptors) and correctness guaran-
tees, and the possibilities for its detection and avoidance. Thus, at
the present moment of time, eliminating the hazards of ABA in a
nonblocking algorithm is left to the ingenuity of the software de-
signer. As illustrated in Table 3, ABA can occur if a process P; is
interrupted at any time after it has read the old value (A;) and be-
fore it attempts to execute the CAS instruction from Algorithm 1.
An interrupting process (FPj) might change the value at L; to a new
value, B;. Afterwards, either Py or any other process P; # P; can
eventually store A; back to L;. When P; resumes in Step 4, its
CAS loop succeeds (false positive execution) despite the fact that
L;’s value has been meanwhile manipulated.

Step Action
Step 1 Py reads A; from L;
Step 2 | Py interrupts Pp; Py stores the value B; into L;
Step 3 P; stores the value A; into L;
Step 4 P; resumes; P; executes a false positive CAS

Table 3. ABA at L;

The ABA problem can corrupt the semantics of a Descriptor-
based design of an unprotected nonblocking dynamic array [4]. As
a common technique for overcoming the ABA problem it has been
suggested to use a version tag attached to each value [15]. Such
an approach demands the application of the architecture-specific
CAS?2 instruction. ABA avoidance on CAS-based architectures has
been typically limited to two possible approaches:

1. split a 32-bit memory word into a value and a counter portions
(thus significantly limiting the usable address space or the range
of values that can be stored) [10],

2. apply value semantics (by utilizing an extra level of indirection,
i.e. create a unique pointer to each value to be stored) in combi-
nation with a memory management approach that disallows the
reuse of potentially hazardous memory locations [17], [25] (thus
impose a significant performance overhead).

As reflected in our performance test results (Section 2.5), the usage
of both, an extra level of indirection as well as the heavy reliance
on a nonblocking GC scheme for managing the Descriptor Objects
and the references to value_type objects, is very expensive with re-
spect to the space and time complexity of a nonblocking algorithm.
In the following section we present a 3-step execution of the De-
scriptor Object approach that helps us eliminate ABA, avoid the
need for an extra level of indirection, and reduce the usage of the
computationally expensive GC scheme.

2.5 ABA Prevention for Descriptor-based Lock-free Designs

In this section we study in detail and define the conditions that
lead to ABA in a nonblocking Descriptor-based design. We in-
vestigate the relationship between the ABA hazards and the most
commonly applied nonblocking programming techniques and cor-
rectness guarantees. Based on our analysis, we define a generic
and practical condition, called the AJ approach, for ABA avoid-
ance for lock-free linearizable designs. The A\ approach provides
ABA prevention by the categorization of the concurrent operations.
For complex operations (in a Descriptor-based design), the Ad ap-
proach identifies the critical point in an operation’s execution and
suggests a 3-step execution strategy for ABA avoidance.

Let us designate the point of time when a certain §-modifying
operation reads the state of the Descriptor Object by Trcqd;, and
the instants when a thread reads a value from and writes a value
into a location L; by Taccess; and Twrite;, respectively. Table 4
demonstrates the occurrence of ABA in the execution of a § object



Step Action
Step 1 Os,: Treads
Step2 | Os,: Taccess;
Step 3 Os,: 75
Step 4 Os,: Treads
Step 5 Os,: Twd
Step 6 O;: Twrite;
Step 7 Os,: Twd

Table 4. ABA occurrence in the execution of a Descriptor Object

with two concurrent 6-modifying operations (Os, and Os,) and a
concurrent write, O;, at L;. We assume that the ¢ object’s imple-
mentation follows Algorithm 2. The execution of Os, , Os,,, and O;
proceeds in the following manner:

(1) Os, reads the state of the current § object as well as the current
value at L;, A; (Steps 1-2, Table 4). Next, Os, proceeds with
instantiating a new § object and replaces the old descriptor with
the new one (Step 3, Table 4).

(2) Os, isinterrupted by O, . Os, reads L and finds the W Dpending

flag’s value to be true (Step 4, Table 4).

(3) Os, resumes and completes the execution of its § object by
storing B; into L; (Step 5, Table 4).

(4) An interrupting operation, O;, writes the value A; into L; (Step
6, Table 4).

(5) Os, resumes and executes wd it has previously read, the wd’s
CAS falsely succeeds (Step 6, Step 4).

The placement of the AJ-point plays a critical role for achieving
ABA safety in the implementation of an wd-executing operation.
The Ad-point in Table 4 guarantees that the wd-executing operation
Os, completes before Os,. However, at the time 7,,¢ when Os,
executes the write descriptor, Os,, has no way of knowing whether
Os, has completed its update at L; or not. Since Os,’s A\d-point
= 75, the only way to know about the status of Os, is to read Ls.
Using a single-word CAS operation prevents Os, from atomically
checking the status of Ls and executing the update at L;.

Definition 6: A concurrent execution of one or more non-w?-
executing 6-modifying operations with one wé-executing operation,
Os,, performing an update at location L; is ABA-free if Os, s \o-
POINt = Tyccess;. We refer to an wd-executing operation where its
AJ-point = Taccess; as a Xd-modifying operation.

Assume that in Table 4 the Os,’s Ad-point = Taccess;- AS
shown in Table 4, the ABA problem in this scenario occurs when
there is a hazard of a spurious execution of Oj,’s Write Descrip-
tor. Having a Ad-modifying implementation of Os, allows any
non-wd-executing §-modifying operation such as Os, to check
Os, ’s progress while attempting the atomic update at L; requested
by Os,’s Write Descriptor. Our 3-step descriptor execution ap-
proach offers a solution based on Definition 6. In an implemen-
tation with two or more concurrent wd-executing operations, each
wd-executing operation must be Ad-modifying in order to eliminate
the hazard of a spurious execution of an w4 that has been picked up
by a collaborating operation.

In Algorithm 8 we suggest a design strategy for the implemen-
tation of a Ad-modifying operation. Our approach is based on a
3-step execution of the § object. While similar to Algorithm 2, the
approach shown in Algorithm 8 differs by executing a fundamental
additional step: in Step 1 we store a pointer to the new descriptor in
L; prior to the attempt to store it in Ls in Step 2. Since all § objects
are memory managed, we are guaranteed that no other thread would
attempt a write of the value uNewDesc in L; or any other shared
memory location. The operation is A§J-modifying because, after the

new descriptor is placed in L;, any interrupting writer thread ac-
cessing L; is required to complete the remaining two steps in the
execution of the Write Descriptor. However, should the CAS ex-
ecution in Step 2 (line 28) fail, we have to unroll the changes at
L; performed in Step 1 by restoring L;’s old value preserved in
WND.OIdElement (line 20) and retry the execution of the routine
(line 21). To implement Algorithm 8, it is necessary to distinguish
between objects of type value_type and §. A possible solution is to
require that all value_type values are pointers and all pointer values
stored in L; are aligned with the two low-order bits cleared during
their initialization. That way, we can use the two low-order bits for
designating the type of the pointer values. Subsequently, every read
must check the type of the pointer obtained from a shared memory
location prior to manipulating it. Once an operation succeeds at
completing Step 1, Algorithm 8, location L; contains a pointer to a
& object that includes both: L;’s previous value of type value_type
and a write descriptor WD that provides a record for the steps nec-
essary for the operation’s completion. Any non-§-modifying oper-
ation, such as a random access read in a shared vector, can obtain
the value of L; (of type value_type) by accessing WD.OIdElement
(thus going through a temporary indirection) and ignore the De-
scriptor Object. Upon the success of Step 3, Algorithm 8, the tem-
porary level of indirection is eliminated. Such an approach would
preserve the wait-free execution of a non-d-modifying operation.
The wé data type needs to be amended to include a field TempEle-
ment (line 9, Algorithm 8) that records the value of the temporary
§ pointer stored in L;. The cost of the Ad operation is 3 CAS ex-
ecutions to achieve the linearizable update of two shared memory
locations (L; and Ls). The implementation of our A§-modifying
operation as shown in Algorithm 8 is similar to the execution of
Harris et al’s M CAS algorithm [14]. Just like our Ad-modifying
approach, for an M CAS update of Ls and L;, the cost of Har-
ris et al.’s M CAS is at least 3 executions of the single-word CAS
instruction. Harris et al.’s work on M CAS [14] brings forward a
significant contribution in the design of lock-free algorithms, how-
ever, it lacks any analysis of the hazards of ABA and the way the
authors manage to avoid it.

2.5.1 Performance Evaluation of the ABA Prevention
Scheme

We incorporated the presented ABA elimination approach in the
implementation of the nonblocking dynamically resizable array as
discussed in Section 2.4. Our test results indicate that the \J ap-
proach offers ABA prevention with performance comparable to the
use of the platform-specific CAS2 instruction to implement ver-
sion counting. This finding is of particular value to the engineering
of some embedded real-time systems where the hardware does not
support complex atomic primitives such as CAS2 [24]. We ran per-
formance tests on an Intel IA-32 SMP machine with two 1.83 GHz
processor cores with 512 MB shared memory and 2 MB L2 shared
cache running the MAC 10.5.6 operating system. In our perfor-
mance analysis we compare:

(1) Ad approach: the implementation of a vector with a Ad-
modifying push_back and a §-modifying pop_back. Table 5
shows that in this scenario the cost of push_back is three single-
word CAS operations and pop_back’s cost is one single-word
CAS instruction.

(2) All-GC approach: the use of an extra level of indirection and
memory management for each element. Because of its perfor-
mance and availability, we have chosen to implement and apply
Herlihy et al.’s Pass The Buck algorithm [19]. In addition, we
use Pass The Buck to protect the Descriptor Objects for all of
the tested approaches.



Algorithm 8 Implementing a AJ-modifying operation through a
three-step execution of a d object

1: Step I: place a new descriptor in L;
2: value_type B; = fComputeB
3: value_type A;

4: WS WD = fus5()

5: WD.Target = L;

6: WD.NewElement = B;

7: v8 DescData = f,,5()

8: & uNewDesc = fs5(DescData, WD)
9: WD.TempElement = &NewDesc
10: pNewDesc.WDpending = true

12: A; = L;~
13: WD.OIdElement = A;
14: until CAS(L;, A;, uNewDesc) == uNewDesc

15:

16: Step 2: place the new descriptor in L

17: bool unroll = false

18: repeat

19:  if unroll then

20: CAS(WD.Target, uNewDesc, WD.OlIdElement)
21: goto 3

22:  endif

23: & uOldDesc = Ls~
24: if £OldDesc.WDpending == true then

25: execute ;1OldDesc. WD

26: end if

27: unroll = true

28: until CAS(L s, nOldDesc, puNewDesc) == uNewDesc
29:

30: Step 3: execute the Write Descriptor
31: if uNewDesc.WDpending then

32: CAS(WD.Target, WD.TempElement, WD.NewElement) == WD.NewElement

33: pNewDesc. WDPending = false
34: endif

(3) CAS2-based approach: the application of CAS2 for maintain-
ing a reference counter for each element. A CAS2-based ver-
sion counting implementation is easy to apply to almost any
pre-existent CAS-based algorithm. While a CAS2-based solu-
tion is not portable and thus not meeting our goals, we believe
that the approach is applicable for a large number of modern
architectures. For this reason, it is included in our performance
evaluation. In the performance tests, we apply CAS2 (and ver-
sion counting) for updates at the shared memory locations at L;
and a single-word CAS to update the Descriptor Object at Ls.

Table 5 offers an overview of the shared vector’s operations’ rela-
tive cost in terms of number and type of atomic instructions invoked
per operation. We varied the number of threads, starting from 1

[ [[ push-back [ pop-back [ readi ]| write_i |
1. X6 approach 3CAS 1 CAS atomic read atomic write
2. All-GC 2CAS +GC 1 CAS +GC atomic read atomic write + GC

3. CAS2-based 1 CAS2 + 1 CAS 1 CAS atomic read 1 CAS2

Table 5. A Shared Vector’s Operations Cost (Best Case Scenario)

and exponentially increased their number to 64. Each thread ex-
ecuted 500,000 lock-free operations on the shared container. We
measured the execution time (in seconds) that all threads needed
to complete. Each iteration of every thread executed an operation
with a certain probability ( push_back (+), pop_back (=), random
access write (w), random access read (r)). We show the perfor-
mance graph for a distribution of +:40%, -:40%, w:10%, r:10%
on Figure 1. Figure 2 demonstrates the performance results with
less contention at the vector’s tail, +:25%, —:25%, w:10%, r:40%.
Figure 3 illustrates the test results with a distribution containing
predominantly random access read and write operations, +:10%,
-:10%, w:40%, r:40%. Figure 4 reflects our performance evalua-
tion on a vector’s use with mostly random access read operations:

A: 40+/40-/10w/10r

time (s)
]

threads

Figure 1. Performance Results A

B: 25+/25-/10w/40r

threads

—1—2 3

Figure 2. Performance Results B

+:20%, —:0%, w:20%, r:60%, a scenario often referred to as the
most common real-world use of a shared container [11]. The num-
ber of threads is plotted along the z-axis, while the time needed
to complete all operations is shown along the y-axis. According to
the performance results, compared to the All-GC approach, the Ad
approach delivers consistent performance gains in all possible op-
eration mixes by a large factor, a factor of at least 3.5 in the cases
with less contention at the tail and a factor of 10 or more when there
is a high concentration of tail operations. These observations come
as a confirmation to our expectations that introducing an extra level
of indirection and the necessity to memory manage each individual
element with PTB (or an alternative memory management scheme)
to avoid ABA comes with a pricy performance overhead. The A\
approach offers an alternative by classifying the concurrent opera-
tions and introducing the notion of a AJ-point. The application of
version counting based on the architecture-specific CAS2 opera-
tion is the most commonly cited approach for ABA prevention in
the literature [15], [19]. Our performance evaluation shows that the
Ad approach delivers performance comparable to the use of CAS2-
based version counting. CAS2 is a complex atomic primitive and
its application comes with a higher cost when compared to the ap-
plication of atomic write or a single-word CAS. In the performance
tests executed, we notice that in the scenarios where the random
access write is invoked more frequently (Figures 3 and 4), the per-
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formance of the CAS2 version counting approach suffers a perfor-
mance penalty and runs slower than the A approach by about 12%
to 20%. According to our performance evaluation, the Ad approach
is a systematic, effective, portable, and generic solution for ABA
avoidance. The Ad scheme does not induce a performance penalty
when compared to the architecture-specific application of CAS2-
based version counting and offers a considerable performance gain
when compared to the use of All-GC.

2.6 STM-based Nonblocking Design

A variety of recent STM approaches [7], [27] claim safe and easy
to use concurrent interfaces. The most advanced STM implemen-
tations allow the definition of efficient large-scale” transactions,
i.e. dynamic and unbounded transactions. Dynamic transactions are
able to access memory locations that are not statically known. Un-
bounded transactions pose no limits on the number of locations
being accessed. The basic techniques applied are the utilization
of public records of concurrent operations and a number of con-
flict detection and validation algorithms that prevent side-effects
and race conditions. To guarantee progress transactions help those
ahead of them by examining the public log record. The availability
of nonblocking, unbounded, and dynamic transactions provides an
alternative to CAS-based designs for the implementation of non-

blocking data structures. The complex designs of such advanced
STMs often come with an associated cost:

a. Two Levels of Indirection: A large number of the nonblocking
designs require two levels of indirection in accessing data.

b. Linearizability: The linearizability requirements are hard to
meet for an unbounded and dynamic STM. To achieve efficiency
and reduce the complexity, all known nonblocking STMs offer
the less demanding obstruction-free synchronization [18].

c. STM-oriented Programming Model: The use of STM requires
the developer to be aware of the STM implementation and ap-
ply an STM-oriented Programming Model. The effectiveness of
such programming models is a topic of current discussions in
the research community.

d. Closed Memory Usage: Both nonblocking and lock-based
STMs often require a closed memory system [7].

e. Vulnerability of Large Transactions: In a nonblocking imple-
mentation large transactions are a subject to interference from
contending threads and are more likely to encounter conflicts.
Large blocking transactions can be subject to time-outs, requests
to abort or introduce a bottleneck for the computation.

f. Validation: A validation scheme is an algorithm that ensures
that none of the transactional code produces side-effects. Code
containing I/O and exceptions needs to be reworked as well as
some class methods might require special attention. Consider
a class hierarchy with a base class A and two derived classes
B and C. Assume B and C inherit a virtual method f and B’s
implementation is side-effect free while C’s is not. A validation
scheme needs to disallow a call to C’s method f.

With respect to our design goals, the main problems associated with
the application of STM are meeting the stricter requirements posed
by the lock-free progress and safety guarantees and the overhead
introduced by the application of an extra level of indirection and
the costly conflict detection and validation schemes.

2.6.1 Obstruction-free Descriptor vs Lock-free Descriptor

To be able to reduce the complexity of implementing nonblocking
transactions, the available nonblocking STM libraries often pro-
vide the weaker obstruction-free progress guarantee. Even for ex-
perienced software designers, understanding the subtle differences
between lock-free and obstruction-free designs is challenging. To
better illustrate how obstruction-free objects differ from lock-free
objects, in Algorithm 9 we demonstrate the implementation of an
obstruction-free Descriptor Object. While similar to the execution
of a lock-free Descriptor Object (Section 2.1), the obstruction-free
Descriptor object from Algorithm 9 differs in two significant ways:

(1) No thread collaboration when executing the Write Descriptor:
interrupting threads need not help interrupted threads complete.
Obstruction-free execution guarantees that a thread will com-
plete eventually in isolation. Thus, every time a thread iden-
tifies an interrupt it can simply repeat its update routine until
the sequence of instructions completes without interrupts. Intu-
itively, a larger number of instructions in the execution routine
implies a higher risk of interrupts.

@

~

Unrolling: when an attempted update at Ls fails, the operation
needs to invoke a mechanism for unrolling any modifications it
had performed to shared memory. In our obstruction-free De-
scriptor, the Write Descriptor stores the necessary information
to execute an undo of Step 1, Algorithm 9 should the attempted
update at Ls in Step 2, Algorithm 9 fail. The unrolling approach
requires that we store two types of objects in a shared loca-
tion L;: elements of type value_type and Write Descriptors of



Algorithm 9 Implementing a Descriptor Object with obstruction-
free semantics

. Step 1: update L;

: 6 pOldDesc = L~

: value_type A, = L;~

: value_type B; = fComputeB

S wS WD = fu5()

WD.Target = L;

: WD.NewElement = B;

: v DescData = f,,5()

: 8 pNewDesc = f5(DescData, WD)
10: WD.TempElement = &NewDesc.WD
11: repeat

12: A; = L;~

13: WD.OIdElement = A;

14: until CAS(L;, A;, uNewDesc. WD) == pNewDesc. WD

16: Step 2: place the new descriptor in L

17: bool unroll = false

18: repeat

19: if unroll then

20: CAS(WD.Target, piNewDesc, WD.OldElement)
21: goto 1

22: end if

23: unroll = true

24: until CAS(L s, pOldDesc, uNewDesc) == puNewDesc
25:

26: Step 3: execute the write descriptor
27: CAS(WD.Target, WD.TempElement, WD.NewElement)

type wd. To distinguish between these two types of objects, we
need to employ bit marking of the unused low-order bits for all
Write Descriptors objects temporarily stored at L;. When an
interrupting thread recognizes an wd object, it can simply ig-
nore its presence and obtain the element (of type value_type)
by reading the field OldElement of the Write Descriptor.

Obstruction-free objects that follow a design similar to Algorithm 9
eliminate the overhead an interrupting thread might experience
when helping an interrupted thread. However, in scenarios with
high contention, obstruction-free objects might experience frequent
interrupts that could result in poor scalability and even livelocking.

2.7 RSTM-based Vector

The Rochester Software Transactional Memory (RSTM) [27]
is a word- and indirection-based C++ STM library that offers
obstruction-free nonblocking transactions. As explained by the au-
thors in [27], while helping provide lightweight committing and
aborting of transactions, the extra level of indirection can cause a
dramatic performance degradation due to the more frequent capac-
ity and coherence misses in the cache. In this section we employ
the RSTM library (version 4) to build an STM-based nonblock-
ing shared vector. We chose RSTM for our experiment because
of its flexible and efficient object-oriented C++ design, demon-
strated high performance when compared to alternative STM tech-
niques, and the availability of nonblocking transactions. In Algo-
rithms 10, 11, 12, and 13, we present the RSTM-based implemen-
tations of the read, write, pop_back, and push_back operations, re-
spectively. According to the RSTM API [27], access to shared data
is achieved by utilizing four classes of shared pointers: 1) a shared
object (class sh_ptriT;) representing an object that is untouched by
a transaction, 2) a read only object (class rd_ptriT;) referring to an
object that has been opened for reading, 3) a writable object (class
wr_ptri T;) pointing to an object opened for writing by a transaction,
and 4) a privatized object (class un_ptrjT;) representing an object
that can be accessed by one thread at a time. These smart pointer
templates can be instantiated only with data types derived from a
core RSTM object class stm::Object. Thus, we need to wrap each
element stored in the shared vector in a class STMVectorNode
that derives from stm::Object. Similarly, we define a Descriptor

class STMVectorDesc (derived from stm::Object) that stores the
container-specific data such as the vector’s size and capacity. The
tail operations need to modify (within a single transaction) the last
element and the Descriptor object (of type STMVectorDesc) that
is stored in a location Lg4esc. The vector’s memory array is named
with the string mem. In the pseudo-code in Algorithms 12 and 13
we omit the details related to the management of mem (such as the
resizing of the shared vector should the requested size exceed the
container’s capacity).

Algorithm 10 RSTM vector, operation read location p

: BEGIN_.TRANSACTION

: rd_ptr< STMVectorNode > rp(mem[p])
: result = rp—value

: END_TRANSACTION

. return result

DN W) —

Algorithm 11 RSTM vector, operation write v at location p

: BEGIN_.TRANSACTION
: wr_ptr< STMVectorNode > wp(mem[p])
D wp—val =v
: sh_ptr< STMVectorNode > nv =
new sh_ptr< STMVectorNode >(wp)
: mem[p] = nv
6: END_-TRANSACTION

AL —

W

Algorithm 12 RSTM vector, operation pop_back

1: BEGIN_.TRANSACTION
2: rd_ptr< STMVectorNode > rp(mem|[L gesc—size-1])
3: sh_ptr< STMVectorDesc > desc =
new sh_ptr< STMVectorDesc >
(new STMVectorDesc(Lgesc—size-1))
: result = rp—value
. Lgesc = desc
: END_TRANSACTION
. return result

Algorithm 13 RSTM vector, operation push_back v

1: BEGIN_.-TRANSACTION
2: sh_ptr< STMVectorNode > nv =
new sh_ptr< STMVectorNode >(new STMVectorNode(v))

3: sh_ptr< STMVectorDesc > desc =

new sh_ptr< STMVectorDesc >

(new STMVectorDesc( L gesc—>size+1))
: mem][size] = nv
. Lgesc = desc
: END_TRANSACTION

[ R

3. Analysis and Results

To evaluate the performance of the discussed synchronization tech-
niques, we analyze the performance of three approaches for the
implementation of a shared vector:

(1) The RSTM-based nonblocking vector implementation as pre-
sented in Section 2.7.

(2) An RSTM lock-based execution of the vector’s transactions.
RSTM provides the option of running the transactional code
in a lock-based mode using redo locks [27]. Though blocking
and not meeting our goals for safe and reliable synchronization,
we include the lock-based RSTM vector execution to gain ad-
ditional insight about the relative performance gains or penal-
ties that the discussed nonblocking approaches offer when com-
pared to the execution of a lock-based, STM-based container.



(3) The hand-crafted Descriptor-based approach as presented in
Section 2.4.

We ran performance tests on an Intel IA-32 SMP machine with

two 1.83 GHz processor cores with 512 MB shared memory and 2
MB L2 shared cache running the MAC 10.5.6 operating system.
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Figure 6. Performance Results II

We designed our experiments by generating a workload of the var-
ious operations. We varied the number of threads, starting from 1
and exponentially increased their number to 32. Each thread ex-
ecuted 500,000 lock-free operations. We measured the execution
time (in seconds) that all threads needed to complete. Each itera-
tion of every thread executed an operation with a certain probabil-
ity (push_back (+), pop_back (=), random access write (w), ran-
dom access read (r)). We show the performance graph for a dis-
tribution of +:10%, -:10%, w:40%, r:40% on Figure 5. Figure 6
demonstrates the performance results in a read-many-write-rarely
scenario, +:10%, —:10%, w:10%, r:70%. Figure 7 illustrates the test
results with a distribution +:25%, —:25%, w:12%, r:38%. The num-
ber of threads is plotted along the z-axis, while the time needed to
complete all operations is shown along the y-axis. To increase the
readability of the performance graphs, the y-axis uses a logarith-
mic scale with a base of 10. Our test results indicate that for the
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Figure 7. Performance Results III

large majority of scenarios the hand-crafted CAS-based approach
outperforms by a significant factor the transactional memory ap-
proaches. The Descriptor-based approach offers simple application
and fast execution. The STM-based design offers a flexible pro-
gramming interface and easy to comprehend concurrent seman-
tics. The main deterrent associated with the application of STM
is the overhead introduced by the extra level of indirection and
the application of costly conflict detection and validation schemes.
According to our performance evaluation, the nonblocking RSTM
vector demonstrates poor scalability and its performance progres-
sively deteriorates with the increased volume of operations and ac-
tive threads in the system. In addition, RSTM transactions offer
obstruction-free semantics. To eliminate the hazards of livelock-
ing, the software designers need to integrate a contention manager
with the use of an STM-based container. Because of the limitations
present in the state of the art STM libraries [27], [7], we suggest
that a shared vector design based on the utilization of nonblocking
CAS-based algorithms can better serve the demands for safe and
reliable concurrent synchronization in mission critical code.

4. Conclusion

In this work we investigated how the application of nonblocking
synchronization can help deliver more efficient and reliable con-
current synchronization in mission critical applications, such as the
Mission Data System Project. We studied the challenging process
of how to design and implement a nonblocking data container by
applying 1) CAS-based synchronization and 2) Software Transac-
tional Memory. We discussed the principles of nonblocking syn-
chronization and demonstrated the application of both approaches
by showing the implementation of a lock-free shared vector. Our
performance evaluation concluded that while difficult to design,
CAS-based algorithms offer fast and scalable performance and in a
large majority of scenarios outperform the alternative STM-based
nonblocking or lock-based approaches by a significant factor. To fa-
cilitate the design of future lock-free algorithms and data structures,
we provided a generic implementation of a Descriptor Object. Un-
derstanding the subtle differences between the two main types of
nonblocking objects, lock-free objects and obstruction-free objects,
is a challenging task even to the most experienced software engi-
neers. To better illustrate the advantages and shortcomings of each
progress guarantee, we provided an obstruction-free design of the
Descriptor object and contrasted its execution to its lock-free coun-
terpart. In addition, we studied the ABA problem and the conditions



leading to its occurrence in a Descriptor-based lock-free linearz-
ibale design. We offered a systematic and generic solution, called
the \J approach, that outperforms by a significant factor the use of
garbage collection for the safe management of each shared loca-
tion and offers speed of execution comparable to the application of
the architecture-specific CAS2 instruction used for version count-
ing. The literature does not offer a detailed analysis of the ABA
problem and the general techniques for its avoidance in a lock-free
linearizable design. Currently, the challenges of eliminating ABA
is left to the ingenuity of the software designer. Having a practical
alternative to the application of the architecture-specific CAS2 is of
particular importance to the design of some modern embedded sys-
tems such as Mars Science Laboratory. This paper aimed at deliver-
ing better understanding of the advantages (over mutual exclusion)
as well as the usability and performance trade-offs of the modern
nonblocking programming techniques that can be of critical impor-
tance for the engineering of reliable and efficient concurrent flight
software.
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