
Pattern Matching for C++

Yuriy Solodkyy (Microsoft)
Gabriel Dos Reis (Microsoft)

Bjarne Stroustrup (Morgan Stanley)
All: formerly Texas A&M University

Pattern Matching - Preliminary - Nov'14 1

Purpose

• To start a discussion
– Would PM be good for C++?
– What would PM for C++ look like?
– What are the costs?

• To give a starting point
– Syntax, aims, semantics
– Based on

• the Mach7 library implementation
– A C++11 library

• Ideas from a variety of functional languages
– Incl., ML, F#, Haskell, Scala, OpenAxiom

Pattern Matching - Preliminary - Nov'14 2

Purpose

• I want an integrated set of language features and libraries for C++
• “Multiparadigm programming” is at best a placeholder

– I have been saying that for almost a decade (maybe more)
– Anyone has a better term?

• Don’t try to define “isolated” mini-languages within C++

Pattern Matching - Preliminary - Nov'14 3

Overview
• What is pattern matching?
• Why consider PM for C++?
• Syntax
• Design questions
• Summary: pros and cons

• This presents a language design based on Mach7
– Y. Solodkyy, G. Dos Reis, and B. Stroustrup: Open Pattern Matching for C++.

ACM GPCE'13.
• http://bit.ly/Mach7 - GitHub of the project
• http://bit.ly/Mach7CppNow - slides of the C++ Now 2014 talk
• http://bit.ly/Mach7CppNowVideo - video of the C++ Now 2014 talk
• http://bit.ly/AcceptNoVisitors - slides of the CppCon 2014 talk
• http://bit.ly/AcceptNoVisitorsVideo - video of the CppCon 2014 talk

– We have an implementation, but not a language design 
Pattern Matching - Preliminary - Nov'14 4

http://www.stroustrup.com/OpenPatternMatching.pdf
http://bit.ly/Mach7
http://bit.ly/Mach7CppNow
http://bit.ly/Mach7CppNowVideo
http://bit.ly/AcceptNoVisitors
http://bit.ly/AcceptNoVisitorsVideo

What is pattern matching?
• A way of picking values using a variety of criteria

– Value
• is x nullptr?

– Type
• is s a Circle?

– Concept
• is Iter a Random_access_iterator

– Predicate
• is sz less than 14

• Type safe unions
• A way of avoiding visitors for class hierarchies
• A way of decomposing objects into parts
• A way of structuring computations
• A simpler notation for some examples

Pattern Matching - Preliminary - Nov'14 5

Simula-inspired derived class lookup

• Use some form of RTTI to determine which derived class
– At least one virtual function in base class
– Could be costly (but see mach7)
– Organizes code as lists of cases (not OO)
– Non-intrusive
– No access to private members

double area(const Shape& s)
{

inspect (s) {
when Circle: return 2*pi*radius(); // not s.radius()
when Square: return height()*width();
default: error(“unknown shape”);
}

}

Found by member lookup in Circle

Found by member lookup in Square
Pattern Matching - Preliminary - Nov'14 6

An alternative to visitors
• Provide a suitable public interface to classes in a hierarchy
class Expr { virtual ~Expr(); };
class Value : Expr { int value; };
class Plus : Expr { Expr& a; Expr& b; };
class Minus : Expr { Expr& a; Expr& b; };
class Times : Expr { Expr& x; Expr& y; };
class Divide: Expr { Expr& divident; Expr& divisor; };

int eval(const Expr* e) // not a virtual function, not a member
{

inspect (e) {
when Value: return value;
when Plus: return eval(a)+eval(b);
when Minus: return eval(a)-eval(b);
when Times: return eval(x)*eval(y);
when Divide: return eval(dividend)/eval(divisor);
}

}
Pattern Matching - Preliminary - Nov'14 7

Pascal-inspired discriminating union

• Have a hidden member/field/discriminant to say which
union/record member is currently used
– Type safe
– Optimizable
– A plain union is faster if you don’t check

variant U { int; double; }; // needs to be distinguished from union
// std::variant?

istream& operator<<(istream& os, const U& u)
{

inspect (u) {
when {int a}: return os << a; // {type local-name} pair
when {double d}: return os << d;

}
}

Pattern Matching - Preliminary - Nov'14 8

Predicate as discriminant?
• Select an alternative by a predicate rather than a separate stored value

struct string_rep {
int sz;
variant U (sz>12) { // select in [0:n); false==0, true==1

char [12]; // characters in rep itself
{ char* p; // characters in free store

int space; // unused allocated space
}

};
char* str()
{

inspect (*this) {
when {0 x}: return x; // {value local-name} pair
when {1 y}: return y.p;
}

}
};

Pattern Matching - Preliminary - Nov'14 9

Concept-based overloading?
• Should we be able to match against concepts?

void advance(Iterator p, int n)
{

inspect(Iterator) {
when Forward_iterator:
when Bidirectional_iterator: while(--n>0) ++p;
when Randomaccess_iterator: p+=n;

}

• PM Is very much like overloading
• P.S. should we allow fall-through for empty patterns?

Pattern Matching - Preliminary - Nov'14 10

Observations
• Type safety has been maintained/guaranteed
• We don’t need switch/case-style fall through

– And won’t propose it
• For class hierarchies

– the set of alternatives is open
• a default is needed

– The alternatives are not disjoint
• when-order matters

– One RTTI operation: not a if-then-else chain
• For unions

– The set of alternatives is closed
• We can give an error if not all cases are covered

– The alternatives are disjoint
• Doesn’t look very FP

– E.g., no algebraic data types
Pattern Matching - Preliminary - Nov'14 11

Patterns
• We can match several entities at once

– We group by {} when matching more than one value
– We need to represent: value, type, and placeholder

template<typename T, typename U>
void f(T& x, U xx)
{

inspect (x,xx) {
when {int* p,0}: p=nullptr;
when {_a,int}: … // _a is a placeholder matching everything

// shorthand for auto _a
}

}

• Place holders become important: what should they look like?
Pattern Matching - Preliminary - Nov'14 12

Selection among alternatives
• A pattern is { … }

– A single type of value doesn’t need parentheses
– When-clauses are executed in order

double factorial(int n)
{

assert(0<=n);

inspect(n) {
when 0: return 1;
when {double m}: return m*factorial(m−1); // m initialized by n
}

}

Pattern Matching - Preliminary - Nov'14 13

Tuples

• Tuples are recursively defined
– tuples have a tail (or should have)

template<typename T…> void print(tuple<T…>& t)
{

inspect (t) { // for this to work, inspect must know about …
when {}: ;
when {auto a}: cout<<a;
when {_a,_tail}: cout<<a; print(tail);
}

}

Pattern Matching - Preliminary - Nov'14 14

Tuples
• Tuples are recursively defined

– tuples have a tail (or should have)

template<typename T…, typename U…>
bool operator==(tuple<T…>& t, tuple<U…>& u)
{

inspect (t,u) {
when {{},{}}: return true;
when {_,{}}: return false; // _ is the unnamed placeholder
when {{},_}: return false;
default: if (head(t)!=head(u)) return false;

return tail(t)==tail(u);
// when {{tHead,tTail}, {uHead,uTail}}: return tHead==uHead && tTail==uTail;
// when {{head, tail}, {head, tail}}: return true;
// when {{head,tail}, {+head,+tail}}: return true;
}

}
Pattern Matching - Preliminary - Nov'14 15

Ranges

• Ranges: vectors, lists, etc.
• A pattern is parenthesized

– Can “list comprehension” be done with C++ containers and/or ranges?
– C++ ranges are [b:e) not recursive (head,tail)

void print(Range<T> r) // use PM?
{

inspect(r) {
when {}: ; // Oops! undefined
when {_p,_q}: cout<<*_p; print(++_p,_q); // iterators
}

}

Pattern Matching - Preliminary - Nov'14 16

Ranges

• A pattern is parenthesized
– Can “list comprehension” be done with C++ containers and/or ranges?
– C++ ranges are [b:e) not recursive (head,tail)

void print(Range<T> r) // use PM?
{

for (x : r) cout << x;
}

• Pattern matching will never be the only control structure

Pattern Matching - Preliminary - Nov'14 17

Ranges
• We can write a pattern for traversing [a:b)

– But should we?
– FP is just syntactic sugar
– Iteration can be faster than recursion

void print(Range<T> r) // use PM?
{

inspect(begin(r),end(r)) {
when {_b,_e} | _b==_e: return; // conditional match
when {Iterator b, Iterator e}: cout<<*_b; print(++_e);
}

}

Pattern Matching - Preliminary - Nov'14 18

Balancing Red-Black Tree
class T{ enum color{black,red} col; T* left; K key; T* right; };

void balance(T& n)
{
T::color col;
const col B = T::black, R = T::red;

inspect(n) {
when T{B, T{R, _a, _x, _b}, _z, _d}: // or use the | combinator
when T{B, T{R, _a, _x, T{R, _b, _y, _c}}, _z, _d}:
when T{B, _a, _x, T{R, T{R, _b, _y, _c}, _z, _d}}:
when T{B, _a, _x, T{R, _b, _y, T{R, _c, _z, _d}}}:

// modify n, *n.left, and *n.right
n.col = R;
*n.left = T{B,_a,_x,_b};
n.key = y;
*n.right = T{B,_c,_z,_d};

when T{col, _, _, _} return;
}

}
Pattern Matching - Preliminary - Nov'14 19

Patterns
• There are many kinds of patterns (in a variety of languages)

and ways of composing them
– Constants
– Variables
– Or
– And
– Tuple
– Nested
– …

• We don’t have to support them all
– Keep simple things simple
– Don’t make complicated things unnecessarily difficult

Pattern Matching - Preliminary - Nov'14 20

Patterns
• Which patterns should we be able to express?

– Tersely?
– Simply?
– Elegantly?
– Experts only?

• We need more archetypical examples
– “We can do it is not a sufficient reason to do it”

• How do PM interact with library types?
– std::tuple, std::pair, std::optional, std::variant
– Concepts, such as Range?

• Lots of little syntax questions
– What should placeholders look like?

Pattern Matching - Preliminary - Nov'14 21

Why consider PM for C++

• PM provides type-safe selection among alternatives
• PM provides a more general switch
• PM provides an alternative to the visitor pattern
• PM is the basic of much functional programming

– Currently very popular
– We get many “suggestions” to add it to C++

• PM can dramatically shorten programs
• Switch-on-type saves us from switching on enums
• PM can be efficiently implemented in C++

– Mach7 library and paper

Pattern Matching - Preliminary - Nov'14 22

Why not introduce PM?

• Yet another language feature
– To overuse
– Stability: We have enough new stuff for C++17

• Unions are good enough
– And if you don’t check the tag unions are faster

• Switch-on-type breaks modularity
– Code organized by function rather than by type
– The reason C with Classes did not have inspect

Pattern Matching - Preliminary - Nov'14 23

Suggested approach

• Start with the simple cases
• Decide on place holder syntax

– _, _a, _1, declare, `a, …
• Decide on generality of patterns

– Mach7 supports a lot
• Variable patterns (yes)
• n+k patterns (no)
• equivalence patterns
• equivalence combinators (+)
• …

Pattern Matching - Preliminary - Nov'14 24

???

Pattern Matching - Preliminary - Nov'14 25

	Pattern Matching for C++
	Purpose
	Purpose
	Overview
	What is pattern matching?
	Simula-inspired derived class lookup
	An alternative to visitors
	Pascal-inspired discriminating union
	Predicate as discriminant?
	Concept-based overloading?
	Observations
	Patterns
	Selection among alternatives
	Tuples
	Tuples
	Ranges
	Ranges
	Ranges
	Balancing Red-Black Tree
	Patterns
	Patterns
	Why consider PM for C++
	Why not introduce PM?
	Suggested approach
	???

