SNEAK PREVIEW: From the Experts

A Conversation with Bjarne Stroustrup

Every C++ developer knows Bjarne
Stroustrup s the creator of the C++ program-
ming language. Rogue Wave Software is excit-
ed that Bjarne will be presenting the keynole
address at the Rogue Wave User Conference
2002 in Vaail, Colorado, July 15-18, 2002. Below
are several questions from Rogue Wave devel-
opers that just couldn’t wazit for the confer-
ence.

RW: Is C++ relevant in the Internet Age?

Bjarne: Certainly. C++ code is not suitable for down-
loading into an unsafe computer, but most comput-
ing is not of that kind.

C++ is the best language for many applications
that involve some systems programming and have
some resource constraints and/or some serious
performance requirements. Google is one example.
Embedded systems for handheld gadgets are another.

In addition, there are lots of programs that don’t direct-
ly interact with the Internet. For such programs, the
world hasn't significantly changed.

RW: Given the language independence the .NET plat-
form brings to the table, what do you think the impact
on C++ will be?

Bjarne: There are several related C++ communities.
Some programmers work on programs intimately
tied to an execution environment (such as .NET, a
particular embedded system, or a particular UNIX vari-
ant). For such people, smooth integration with their
platform is a major part of their concern.

There is enough emphasis on C++ in Microsoft’s NET
world that C++ will remain a major language there, but
for many the emphasis will inevitably be on the integra-
tion into the platform and interoperability with
code written in other languages. In the longer term,
people will get a degree of language independence at
the cost of serious platform dependence. That could
stifle experimentation with newer parts of C++, but so
many C++ programmers use absurdly limited subsets
that in the short term .NET could actually be a stimulus
to better C++ use.

That said, my heart is with the programmers who
fight for platform independence and portability.
For those programmers thin interfaces and plat-
form-independent libraries are going to be key. The
ISO standard is the tie that binds the C++ sub-commu-
nities together and stops the language breaking up into
a mess of proprietary dialects.

RW: The ISO/ANSI C++ standards committee is start-
ing to discuss changes and extensions to the C++
language and libraries. Do you have a particular
extension that you would very much like to see, or,
one to which you are strongly opposed?

Bjarne: My general idea is simple: we should be cau-
tious and deliberate about language extensions, but
aggressive and opportunistic about standard library
extensions. My reasons are almost equally simple:
we want to increase portability and stability, which
we can't do with a changing language. Libraries are dif-
ferent. If we get a “dud” library, users can ignore it in
favor of better alternatives, or simply build or buy a bet-
ter implementation than the one they got from their
compiler vendor.

People expect more from a programming language
these days—giveaways from the proprietary lan-
guages led the way here—and those expectations
are most easily and safest met by increasing the
size of the standard library. This is especially so if
we can organize much of the standard library as exten-
sible frameworks as was done with iostreams and the
STL.

A successful extension of the language requires a direc-
tion, as does a successful direction of what I think of as
the core of the standard library. In the language
area, I'd like to focus on minor facilities that make
the language more uniform and therefore easier to
learn and easier to use generically. So how might this
concern programmers who are more interested in
getting their work done than in language details?
The most obvious impact will be the new items
offered by the standard library. A larger standard
library both saves work and teaches technique and
style. A problem with early C++ was that even
though it provided good support for object-oriented
programming, it did not supply a good library that

demonstrated OOP to users. That led to much con-
fusion and many myths. The introduction of generic
programming was done better, largely because the
STL provided a concrete example for use and study. I
just wish we had an equally good and useful exam-
ple of the use of exceptions.

I'm working on a library called XTI (eXtended Type
Information), providing an interface to general
C++ type information for use in introspection and
program transformation. I'd like to see something
like that in the standard library. In general, I'd like to
see better support for distributed programming
and believe that to be primarily a library issue.

RW: What important trends do you see in C++ program-
ming?

Bjarne: The C++ world is so large that it is hard to
know if something you see is a trend or not. I think that
there is a serious increase of C++ use in the embedded
community, but I don’t know how I would go about
being sure. I know that there is an increase in the
interest in “template metaprogramming,” “generic
programming,” and “generative programming,” but I'm
not sure how broad-based that is. My guess is that these
are “hot topics” among pioneers and academics and
that some—but not all—of the new techniques will
enter the mainstream over the next few years. There
seems to be more C++ open source projects now, but I
can't be sure. The C++ world is too large for any
individual to completely understand it.

New techniques like generic programming and new lan-
guage tools such as template exceptions are slow to
make it into the open source community—too slow-
ly for my taste, of course. I'd like to see some of the
open source projects adopt more modern program-
ming styles. The reason for this conservatism is
that the open source community cannot “just send
their contributors on a course” to ensure that all
have a similar and up-to-date view of tools and tech-
niques.

RW: Has C++ been so successful that programmers
who need a language with the design criteria of C++
automatically turn to C++?

Bjarne: No, the world isn't that simple.
Programmers, like all people, are affected by pro-
fessional marketing. Programmers, like all people,
tend to overestimate the (much hyped) advantages
of the new while underestimating

the (rarely mentioned) complementary disadvantages,
and to (wrongly) take for granted that they won't have
to leave something important behind when they

make a change. Note that sometimes C++ is “the
new language” and people move to it for reasons that
have nothing to do with its technical strengths and
weaknesses. In an ideal world people objectively
choose based on their needs. In the real world, we
are subjective and rarely know our future needs
well. Sometimes we get disappointed.

RW: Unlike Java, C# and Visual Basic, no one owns
C++. In this way, it is a lot like Linux and other mem-
bers of the open source movement. Yet it has not
enjoyed the same appeal as the open source move-
ment. Why not?

Bjarne: C++ is pragmatic, not messianic, and C++ does
not have a political aspect—unless you want to catego-
rize “not proprietary, controlled by an ISO standards
committee” as political. Also, in some places propo-
nents of alternatives have unfairly painted C++ as
“a Microsoft language.” Another problem is proba-
bly that I have concentrated too much on prob-
lems of performance and scale that have little
appeal to novices and students. And then, of
course, my dislike of hype may be getting in the
way of effective marketing.

RW: What future role do you see for providers of pro-
prietary libraries?

Bjarne: As the editor of Addison-Wesley's “C++ In
Depth” series, I try to choose interesting and
important topics, and good writers, of course. I
like libraries as a way of making ideas and techniques
concrete; that's why you can find books on ACE,
Loki and BGL in my series. Each of these show-
case ideas that are less commonly known and not as
widely used as I'd like to see. However, that doesn’t
mean that I deem every library described in the series
as perfection of its kind. I always hope for even
better libraries. In particular, publishing an ACE
book does not imply that I prefer open source
libraries to commercial libraries. Both have important
roles to play.

I'm no businessman, so I don’t claim to know
where the economic opportunities are, and I'm
not an economist. However, my impression is that the
profits are not in the really fundamental technology
or the really new ideas. People prefer to spend
their money on something fairly close to their spe-
cific application. Almost by definition, successful
proprietary libraries and tools are where the prof-
its are.

Solid engineering, quality, scale, interoperability, teach-
ing, maintenance and support are areas where

software produced by unpaid programmers have a
hard time competing. Note that where “free” and
open source providers succeed on a larger scale, they
do so through for-profit schemes. Even programmers
have to eat sometimes!

I note that commercial implementations of the
C++ standard library have been popular over the
years, so I don't see the standard libraries as necessar-
ily competing with commercial libraries. I hope that the
C++ standard library can be a good base for more spe-
cialized libraries—many of which could be proprietary.

RW: C paved the way for C++. Do you envision C++
paving the way for a ‘next’ language? What kind of
paradigm shift (procedural vs. 00, for example)
should developers be expecting as a result?
Bjarne: I suspect that the world is too fractured for a
single "next language." In particular, neither Java nor
C# fits the bill.

Also, there is too much talk about "paradigm shifts."
Object-oriented programming didn't come along as
superior to procedural programming in every way. I
think of "techniques" or "styles" more than of "para-
digms." C++ supports several styles; it is a multi-para-
digm language. This is important because what is hyped
as "paradigms" tend not to be mutually exclusive. On
the contrary, the styles can be mutually supportive.

So I'd rather not guess about a "next paradigm," but just
predict that if and when it arrives, it will be found to
complement and work well with procedural, object-ori-
ented, and generic techniques.

RW: Was the ability to do compile-time computation
using templates one of the design goals for tem-
plates, or was it a happy accident?

Bjarne: A bit of both. I worked hard at getting the prim-
itives right, such as allowing inlining and merging of
call and definition context. My focus was flexibility and
efficiency of a few important examples, such as doing a
sum over an array. That, plus a natural preference for
generality over special-purpose features, and a dislike of
unnecessary restrictions opened the way for techniques
that I had not dreamed of, such as the STL. In that,
templates resemble the rest of C++. [wouldn't like to
build a tool that could only do what I had been able to
imagine for it.

RW: How could templates have been made easier for
developers to learn?

Bjarne: I see no reason to believe that templates are
any more "scary" or "difficult" than classes and class
hierarchies were. When I introduced those, the clamor
about how complicated, unsafe, unmanageable and
useless those features were was deafening.

Sadly, many programmers recoil from new constructs. I
think that part of the reason is natural caution when it
comes to critical tools. However, other parts are intel-
lectual laziness, fear of new things that might disrupt
comfortable old ways, and simply the habit of many in
the software industry of disparaging things seen as com-
petition.

If this reasoning is sound, we can simply wait for the
clamor to die down as more people learn to use the new
techniques well, as the excesses of enthusiasm cease,
and our tools improve. Templates allow simpler expres-
sion of some important solutions and techniques than
do alternatives, and can be used to deliver more effi-
cient code than alternatives. In the longer run, fast
code expressed concisely always wins.

