
Support for the Evolution of C++ Generic
Functions

Peter Pirkelbauer, Damian Dechev, and Bjarne Stroustrup

Department of Computer Science and Engineering
Texas A&M University

College Station, TX 77843-3112
peter.pirkelbauer@tamu.edu ddechev@sandia.gov bs@cse.tamu.edu

Abstract. The choice of requirements for an argument of a generic type
or algorithm is a central design issue in generic programming. In the
context of C++, a specification of requirements for a template argument
or a set of template arguments is called a concept.

In this paper, we present a novel tool, TACE1, designed to help program-
mers understand the requirements that their code de facto imposes on
arguments and help simplify and generalize those through comparisons
with libraries of well-defined and precisely-specified concepts. TACE au-
tomatically extracts requirements from the body of template functions.
These requirements are expressed using the notation and semantics de-
veloped by the ISO C++ standards committee. TACE converts implied
requirements into concept definitions and compares them against con-
cepts from a repository. Components of a well-defined library exhibit
commonalities that allow us to detect problems by comparing require-
ment from many components: Design and implementation problems man-
ifest themselves as minor variations in requirements. TACE points to
source code that cannot be constrained by concepts and to code where
small modifications would allow the use of less constraining concepts.
For people who use a version of C++ with concept support, TACE can
serve as a core engine for automated source code rejuvenation.

1 Introduction

A fundamental idea of generic programming is the application of mathematical
principles to the specification of software abstractions [1]. ISO C++ [2][3] supports
generic programming through the use of templates. Unfortunately, it does not
directly support the specification of requirements for arguments to generic types
and functions [4]. However, research into language-level support for specifying
such requirements, known as concepts, for C++ has progressed to the point their
impact on software can be examined [5][6][7]. Our work is aimed at helping
programmers cope with the current lack of direct support for concepts and to
ease the future transition to language-supported concepts.

1 template analysis and concept extraction

Templates are a compile-time mechanism to parameterize functions and classes
over types. When the concrete template argument type becomes known to the
compiler, it replaces the corresponding type parameter (template instantiation),
and type checks the instantiated template body. This compilation model is flexi-
ble, type safe, and can lead to high performance code [8]. For over a decade, C++
templates have helped deliver programs that are expressive, maintainable, effi-
cient, and organized into highly reusable components [9]. Many libraries, such as
the C++ Standard Template Library (STL) [10], the BOOST graph library [11],
STAPL [12], for which adaptability and performance are paramount rest on the
template mechanism.

C++ currently does not allow the requirements for the successful instantiation
of a template to be explicitly stated. Instead, such requirements must be found
in documentation or inferred from the template body. An attempt to instantiate
a template with types that do not meet its requirements fails with error messages
that can be very hard to understand [5]. Also, C++ provides only weak support for
overloaded templates. A number of programming techniques [13][14][15][16] offer
partial solutions to these problems, but they tend to raise the level of complexity
of template implementations and can make programs harder to understand.

Concepts [5][6][7] provide systematic remedies and deliver better support for
the design and development of generic programs. Concepts improve the expres-
siveness, make error messages more precise, and provide better control of the
compile-time resolution of templates. Importantly, the use of concepts does not
incur runtime overhead when compared to templates not using concepts. Unfor-
tunately, concerns about usability, scalability, and the time needed to stabilize a
design prevented concepts from being included in the next revision of C++ [17].

In this paper, we present a novel tool for template analysis and concept ex-
traction, TACE, that addresses some of these concerns. TACE extracts concept
requirements from real world C++ code and helps apply concepts to uncon-
strained templated code. The paper offers the following contributions:

– A strategy for evolving generic code towards greater generality, greater uni-
formity, and more precise specification.

– Type level evaluation of uninstantiated template functions and automatic
extraction of sets of requirements on template arguments.

– Concept specifications that depend on other generic functions.

Experience with large amounts of generic C++ code and the development of
C++ generic libraries, such as the generic components of the C++0x standard
library [18] shows that the source code of a class template or a function template
is not an adequate specification of its requirements. Such a definition is sufficient
for type safe code generation, but even expert programmers find it hard to
provide implementations that do not accidentally limit the applicability of a
template (compared to its informal documentation). It is also hard to precisely
specify template argument requirements and to reason about those.

Consequently, there is wide agreement in the C++ community that a formal
statement of template argument requirements in addition to the template body

is required. Using classical type deduction techniques modified to cope with
C++, TACE generates such requirements directly from the code to enable the
programmer to see the implications of implementation decisions. Furthermore,
the set of concepts generated from an implementation is rarely the most gen-
eral or the simplest. To help improve the design TACE compare the generated
(implied) concepts to a library concepts (assumed to be well designed).

Fig. 1. The TACE tool chain

Fig. 1 shows TACE’s tool chain. TACE utilizes the Pivot source-to-source
transformation infrastructure [19] to collect and analyze information about C++
template functions. The Pivot’s internal program representation (IPR) preserves
high-level information present in the source code - it represents uninstantiated
templates and is ready for concepts. TACE analyzes expressions, statements,
and declarations in the body of template functions. Since function instantiations
do not have to be present, TACE can operate on modularily defined template
libraries. It evaluates the template body on the type level and extracts the re-
quirements on template arguments. TACE alerts programmers on code, where
a requirement cannot be modeled with concepts. It merges the requirements
with requirements extracted from functions that the template body potentially
invokes. The resulting sets of requirements can be written out as concept defi-
nitions.

Our experiments demonstrate that TACE can extract requirements from
individual functions. However, our goal is to find higher-level concepts that prove
useful at the level of the design of software libraries. TACE achieves this by
matching the extracted sets of requirements against concepts stored in a concept
repository (e.g., containing standard concepts). In addition to reporting matches,
the tool also reports close misses. In some cases, this allows programmers to
reformulate their code to facilitate types that model a weaker concept. Our test
results for STL indicate that our tool is effective when used in conjunction with
a concept repository that contains predefined concepts.

The rest of the paper is organized as follows: §2 provides an overview of con-
cepts as proposed for C++0x, §3 presents the extraction of requirements from
function bodies, §4 describes the requirement analysis and how to form con-
cepts for individual functions; §5 describes matching the extracted requirements
against predefined concepts from a repository, §7 puts this work in context to
related work, and §8 provides a conclusion and outlook to subsequent work.

2 Concepts for C++

Concepts as designed for C++ [6][5][7] provide a mechanism to express constraints
on template arguments as sets of syntactic and semantic requirements.

Syntactic requirements describe requirements such as associated functions,
types, and templates that are necessary for the template instantiation to succeed.
Consider the following template, which determines the distance between two
iterators:

template<typename Iterator>
size t distance(Iterator first, Iterator last) {

size t n = 0;
while (first != last) { ++first; ++n; }
return n;
}

The function distance requires types that substitute for the type parameter
Iterator have a copy constructor (to copy the arguments), an inequality (!=)
operator, and an increment (++) operator. A requirement’s argument type can be
derived from the source code. Requirements can be stated using a C++ function
signature like notation.

concept DistanceIterator<typename T> {
T::T(const T&); // copy constructor
bool operator!=(T, T);
void operator++(T);
}

In order not to over-constrain templates, function signatures of types that model
the concept need not match the concept signature exactly. C++’s pseudo sig-
natures allow automatic conversions of argument types. This means that an
implementation of operator!= can accept types that are constructable from T.

The return type of a function has to be named but can remain unbound. In
the following example, the concrete result type of operator* is irrelevant, as long
as there exists an operator== that handles the result type together with an int

argument.

template <ZeroInit T>
bool is zero(T t) {
return (∗t == 0);
}

Concepts introduce associated types to model such types. The following concept
definition introduces an associated type ResDeref to specify the return type of
operator*. Associated types can be constrained by nested requirements (e.g., the
requires clause).

concept ZeroInit<typename T> {
typename ResDeref;

// nested requirements
requires Constructable<T, int>; // providing constructor ResDeref(int)
requires EqualityComparable<ResDeref>; // providing operator==

ResDeref operator∗(T); // provides deref operator∗
}

The compiler will use the concept definitions to type check expressions, decla-
rations, and statements of the template body without instantiating it. Moreover,
any type (or combination of types) that fulfills the concept requirements can be
used to instantiate the template bodies.

Semantic requirements describe behavioral properties, such as the equivalence
of operations or runtime complexity. Types that satisfy the semantic require-
ments are guaranteed to work properly with a generic algorithm. Axioms model
some behavioral properties. In the following example, the axiom indirect deref

specifies that the operations of the left and right side of <=> are equivalent.
Compilers are free to use axioms for code optimizations.

concept Pointer<typename T> {
typename data;
data operator∗(T);
T operator+(T, size t);
data operator[](T, size t);

axiom indirect deref(T t, size t n) {
t[n] <=> ∗(t+n);
}
}

Concepts can extend one or more existing concepts and add new require-
ments. Any requirement of the “base” concept remains valid for its concept
refinements.

concept BidirectionalIterator<typename T> {
requires ForwardIterator<T>;
. . .
}

Concept refinements are useful for the implementation of a family of generic
functions. A base implementation constrains its template arguments with a gen-
eral concept, while specialized versions exploit the stronger requirements of con-
cept refinements to provide more powerful or more efficient implementations.
Consider, the STL algorithm advance(Iter, Size) for which three different im-
plementations exist. Its basic implementation is defined for input-iterators and

has runtime complexity O(Size). The version for bidirectional-iterators can han-
dle negative distances, and the implementation for random access improves the
runtime complexity to O(1). The compiler selects the implementation according
to the concept a specific type models [20].

Concepts can be used to constrain template arguments of stand-alone func-
tions. In such a scenario, the extracted concept requirements reflect the function
implementation directly. In the context of template libraries, clustering similar
sets of requirements yields reusable concepts, where each concept constrains a
family of types that posses similar qualities. Clustering requirements results in
fewer and easier to comprehend concepts and makes concepts more reusable.
An example of concepts, refinements, and their application is STL’s iterator
hierarchy, which groups iterators by their access capabilities.

3 Requirement Extraction

TACE extracts individual concept requirements from the body of template func-
tions by evaluating declarations, statements, and expressions on the type level.
Similar to the usage pattern style of concept specification [8], we derive the
requirements by reading C++’s evaluation rules [21] backwards. The type level
evaluation yields a set of requirements ζ that reflect functional requirements and
associated typenames.

3.1 Evaluation of Expressions

A functional requirement op(arg1, . . . , argn) → res is similar to a C++ signa-
ture. It consists of a list of argument types (arg) and has a result type (res).
Since the concrete type of template dependent expressions is not known, the
evaluator classifies the type of expressions into three groups:
Concrete types: this group comprises all types that are legal in non template
context. It includes built-in types, user defined types, and templates that have
been instantiated with concrete types. We denote types of this class with C.
Named template dependent types: this group comprises named but not yet known
types (i.e., class type template parameters, dependent types, associated types,
and instantiations that are parametrized on unknown types), and their deriva-
tives. Derivatives are constructed by applying pointers, references, const and
volatile qualifiers on a type. Thus, a template argument T, T*, T**, const T,
T&, typename traits<T>::value type are examples for types grouped into this
category. We denote types of this class with T .
Requirement results: This group comprises fresh type variables. They occur in
the context of evaluating expressions where one or more subexpressions have a
non concrete type. The symbol R denotes types of this class. The types R are
unique for each operation, identified by name and argument types. Only the fact
that multiple occurrences of the same function must have the same return type,
enables the accumulation of constraints on a requirement result. (e.g., the STL
algorithm search contains two calls to find).

concrete expression Γ
exp
` s1:C1,ζ1 ... sn:Cn,ζn

Γ
exp
` expr(s1, ..., sn):Cexpr,{}

unbound function Γ
exp
` s1:A1,ζ1 ... sn:An,ζn

Γ
exp
` uf(s1,...,sn):Ruf(s1, ... sn),{uf(A1, ... ,An)→Ruf(s1, ... sn)}

bound function
Γ

exp
` (bf :(A

bf
1 ,...,Abf

n)→Abf
r) s1:A1,ζ1 ... sn:An,ζn

Γ
exp
` fn(s1, ..., sn):A

bf
r ,

⋃
1≤i≤n

{conv(Ai)→A
bf
i }

conditional operator Γ
exp
` s1:A1,ζ1 s2:A2,ζ2 s3:A2,ζ3

Γ
exp
` (s1?s2:s3): A2,{A1 bool,A2/3 R?}

member functions Γ
exp
` o:Ao,ζo s1:A1,ζ1 sn:An,ζn

Γ
exp
` o.uf(s1,...,sn):Ruf (o,s1, ... sn),{Ao::uf(A1, ... ,An)→Ruf(o,s1, ... sn)}

non concrete arrow Γ
exp
` o:Ao,ζo

Γ
exp
` o->:R->o,{operator->(Ao)→R->o}

Fig. 2. Evaluation rules of expressions

In the ensuing description, we use N for non concrete types (T ∪R) and A for
any type (N ∪C). For each expression, the evaluator yields a tupel consisting of
the return type and the extracted requirements. For example, expr : C, ζ denotes
an expression that has a concrete type and where ζ denotes the requirements
extracted for expr and its subexpressions. We use X Y to denote type X
be convertible to type Y . Fig. 2 and Fig. 3 shows TACE’s evaluation rules of
expressions in a template body. Note, that the rules in Fig. 2 and Fig. 3 only
show new requirements, but omit the union of requirements (ζ) extracted from
subexpressions.

A concrete expression (expr) is an expression that does not depend on any
template argument (e.g., literals, or expressions where all subexpressions (s)
have concrete type). The result has a concrete type. ζ contains the union of the
requirements of its subexpressions.

Calls to unbound functions (uf) (and unbound overloadable operators, con-
structors, and destructor) have at least one argument that depends on an un-
known type N . Since uf is unknown, its result type is denoted with a fresh type
variable Ruf (s1, ... sn).

Calls to bound functions (bf) have the result type that they specify. bf ’s
specification of parameter and return types can add conversion requirements to
ζ (i.e., when the type of a subexpression differs from the specified parameter
type and when at least one of these types is not concrete.)

The conditional operator (?:) cannot be overloaded. The ISO standard def-
inition requires the first subexpression be convertible to bool. The types of the
second and third subexpression either have to be the same, or exactly one con-
version that results in the two arguments having the same type has to exist.

Other not overloadable operators (i.e., typeid and sizeof) do not add any
constraints and are evaluated according to regular C++ rules.

C++ concepts do not support modeling of member variables. Thus the ap-
plication of a member selection (i.e, the dot or arrow operator can only refer
to a member function name. The type evaluator rejects any dot expression that

occurs not in the context of evaluating the receiver of a call expression. Any
member selection operation is transformed into an unbound member function
call.

For non concrete objects, the evaluator treats the arrow as a unary operator
that yields an object of unknown result type. The object becomes the receiver
of a subsequent call to an unbound member function.

static cast
Γ

exp
` Atgt,ζtgt o:Ao,ζo

Γ
exp
` Atgt,{Ao Atgt}

dynamic cast
Γ

exp
` Atgt,ζtgt o:Ao,ζo

Γ
exp
` Atgt,{PolymorphicClass<Ao>}

other casts
Γ

exp
` Atgt,ζtgt o:Ao,ζo

Γ
exp
` Atgt,{}

Fig. 3. Evaluation rules of cast expressions

Cast expressions are evaluated according to the rules specified in Fig. 3. The
target type of a cast expression is also evaluated and can add dependent name
requirements to ζ. A static cast requires the source type be convertible to the
target type. A dynamic cast requires the source type to be a polymorphic class
(PolymorphicClass is part of C++ with concepts).

The evaluation of operations on pointers follows the regular C++ rules, thus
the result of dereferencing T∗ yields T&, the arrow operator yields a member
function selection of T , taking the address of T∗ yields T**, and any arithmetic
expression on T∗ has type T∗. Variables in expressions are typed as lvalues of
their declared type.

3.2 Evaluation of Declarations and Statements

statement context Γ
stmt
` τ∈N,s:A,ζ
ε,ζ+A τ

default ctor Γ
decl
` o:(Γ,τ∈No)

Γ
decl
` o:τ,{τ ::ctor()}

single argument ctor Γ
decl
` o:(Γ,τ∈No),s1:A1,ζ1

Γ
decl
` o:τ,ζ1+τ ::ctor(constτ&)+A0 τ

constructor Γ
decl
` o:(Γ,τ∈No),s1:A1,ζ1, ..., sn:An,ζn

Γ
decl
` o:τ,

⋃
1≤i≤n

ζi+τ ::ctor(A1, ..., An)

parameter Γ
decl
` p:(Γ,τ∈No)

Γ
decl
` p:τ,{τ ::ctor(A1, ..., An)}

Fig. 4. Evaluation rules of declarations

We derive the following constraints from the evaluation of statements and
declarations (of variables and parameters):
Statements: The condition expressions of if, while, for require the expression
to be convertible to bool. The return statement requires convertibility of the
expression to the function return type. The expression of the switch statement is
either convertible to signed or unsigned integral types. We introduce an artificial
type Integer that subsumes both types. The type will be resolved later, if more
information becomes available.
Object declarations: Variable declarations of object type require the presence
of a constructor. Constructions with a single argument (i.e., T t = arg) are
modeled to require Aarg T and a copy constructor on T .
References: Bindings to lvalue (mutable) references (i.e., declarations, function
calls, and return statements) imposer stricter requirements. Instead of convert-
ibility, they require the result type of an expression be an exact type (instead of
a convertible type).

3.3 Evaluation of Class Instantiations

The current implementation focuses on extracting requirements from functions,
and thus treats any instantiation of classes that have data members and where
the template parameter is used as template argument as concrete type (e.g. pair,
reverse iterator); ζ remains unchanged. To allow the analysis of real world C++
template functions, TACE analyses classes that contain static members (types,
functions, and data). Particularly, trait classes can add dependent type require-
ments to ζ. For example, the instantiation of iterator traits<T>::value type

leads to the type constraint T::value type.
Static (templated) member functions of templated classes (e.g.: the various

variants of sort) are treated as if they were regular template functions. The
template parameters of the surrounding class extend the template parameters
of the member function. For example:

template <class T>
struct S { template <class U> static T bar(U u); };

is treated as:

template <class T, class U> T bar(U u);

3.4 Examples

We use GCC’s implementation (4.1.3) of the STL function search to illustrate
our approach. The function and concept declarations start with:

template<typename FwdIter1, typename FwdIter2>
FwdIter1
search(FwdIter1 first1, FwdIter1 last1, FwdIter2 first2, FwdIter2 last2) {

concept Search <typename FwdIter1, typename FwdIter2> {
FwdIter1::FwdIter1(const FwdIter1&); // argument construction
FwdIter2::FwdIter2(const FwdIter2&); // argument construction

We begin by extracting the requirements from the first statement:

// STL search
if (first1 == last1 || first2 == last2)
return first1;

The condition of the if statement consists of an operator|| call that has two
arguments. The left and right arguments are produced by calls to operator==

that in turn take two arguments of FwdIter1 and FwdIter2 respectively. FwdIter1
is an unknown type, thus the specific operator== and its result type are unknown;
the requirement operator==(FwdIter1&, FwdIter1&)→ r1 is added to ζsearch.
The operator== on the right hand side of operator‖ is treated likewise. From
the evaluation of the first two expressions, we determine the input arguments for
operator|| to be r1, r2, the result type is r3. Since r3 is evaluated as condition,
it must be convertible to bool. The return statement does not produce any new
requirement, because the copy constructor of FwdIter1 is already part of ζsearch.

// requirements of search
typename r1;
r1 operator==(FwdIter1&, FwdIter1&);
typename r2;
r2 operator==(FwdIter2&, FwdIter2&);
typename r3;
r3 operator||(r1, r2);
operator bool(r3);

We proceed with the source code of search:

// STL search (cont’d)
FwdIter2 tmp(first2);
++tmp;
if (tmp == last2)
return find(first1, last1, ∗first2);

After adding operator++(FwdIter2&) → r4, the evaluator encounters the if

condition. The requirement operator==(FwdIter2&, FwdIter2&) → r2 is al-
ready in ζsearch, but the context of evaluating a condition expression leads to
the new requirement r2 bool. Evaluating the argument list yields the require-
ment operator ∗ (FwdIter2&)→ r7. The call to find results in the requirement
find(FwdIter1&, FwdIter1&, r7) → r8, and the context of the return state-
ment adds r8 FwdIter1.

// requirements of search (cont’d)
r5 operator++(FwdIter2&);
operator bool(r2);
typename r7;
r7 operator∗(FwdIter2&);
typename r8;
r8 find(FwdIter1&, FwdIter1&, r7);
operator FwdIter1(r8);

We continue with the source code of search:

// STL search (cont’d)
FwdIter2 p1, p;
p1 = first2;
++p1;
FwdIter1 current = first1;

The declarations of p1 and p require the presence of a default constructor on
FwdIter2 and assignment operator.

// requirements of search (cont’d)
FwdIter2::FwdIter2(); // default constructor
void operator=(FwdIter2&, FwdIter2&);

We skip the remaining code and requirements.

4 From Requirements to Concepts

This section discusses the analysis and manipulation of the extracted require-
ments with the goal to print out function specific concepts.

4.1 Function Calls

Consider the requirements that were extracted from search (§3.4). It contains
two calls to a function find, an unbound non-member call that potentially (or
likely) resolves to STL’s templated function. We have a choice, how we can
handle such functions.
• A simplistic approach (§3.4) could print the concept Search and represent the
calls to find as functional requirement.

typename r8;
r8 find(FwdIter1&, FwdIter1&, r7);
operator FwdIter1(r8);
void operator=(FwdIter1&, r8);

• Another approach would replace the requirements related to find with a simple
refinement clause, and eliminate the requirements on r8 (the conversion require-
ment becomes obsolete, and operator=(FwdIter1, FwdIter1) already exists in
search).

requires Find<FwdIter1, r7>;

Both approaches lead to (deeply) nested requirements. Search does not ex-
pose the requirements on FwdIter1 (or on the combination of FwdIter1 with
r7) that stem from Find. Thus, we would expect requirement errors that stem
from deeply nested templated function calls to remain hard to understand for
programmers.
• TACE’s approach is to merge the requirements of the callee into the caller, if
a callee exists. A callee exists, when there is a template function with the same
name defined in the same namespace, and when that function’s parameter are at
least as general as the arguments of the call expression. (e.g., search calls find).

4.2 Result Type Reduction

In the extracted set of requirements, any result of an operation is represented as
an unnamed type requirement (i.e., associated types such as r1 and r2 in §3.4).
However, the evaluation context contributed more information about these types
in the form of conversion requirements. TACE invokes a function reduce that
propagates the target types of conversions.

reduce(ζ)→ ζ ′

Should a requirement result have more than one conversion targets (for ex-
ample, an unbound function was evaluated in the context of bool and int), we
apply the following subsumption rule: assuming n conversion requirements with
the same input type (R) but distinct target types Ai.

R′ =

{
Aj if ∃j∀i such that Aj Ai

R otherwise

Note, that the Aj Ai must be part of ζ, or defined for C++ built in types.
If such an Aj exists, all operations that depend on R are updated, and become
dependent on Aj . Any conversion requirement on R is dropped from ζ. When R
is not evaluated by another function it gets the result type void. If R is evaluated
by another expression, but no conversion requirement exists, the result type R′

remains unnamed (i.e. becomes an associated type).
After the return type has been determined, the new type R′ is propagated to

all operations that use it as argument type. By doing so, the set of requirements
can be further reduced (e.g., if all argument types of an operation are in C, the
requirement can be eliminated, or in case the operation does not exist, an error
reported) and more requirement result types become named (if an argument
type becomes T , another operation on T might already exist). Reduction is a
repetitive process that stops when a fixed point is reached.
For example, reduce reduces the set of requirements that we got from merging
search and find:

concept search <typename FwdIter1, typename FwdIter2> {
FwdIter1::FwdIter1(const FwdIter1&);
FwdIter2::FwdIter2(const FwdIter2&);
bool operator==(FwdIter1&, FwdIter1&);
bool operator==(FwdIter2&, FwdIter2&);
typename r4;
r4 operator++(FwdIter2&);
typename r5;
r5 operator∗(FwdIter2&);
FwdIter2::FwdIter2();
void operator=(FwdIter2&, FwdIter2&);
bool operator!=(FwdIter1&, FwdIter1&);
void operator=(FwdIter1&, FwdIter1&);
typename r11;
r11 operator++(FwdIter1&);

bool operator==(r11, FwdIter1&);
typename r13;
r13 operator∗(FwdIter1&);
bool operator==(r13, r5);
bool operator==(r4, FwdIter2&);

typename r529; // from find
r529 operator==(r13, const r5&);
typename r530;
r530 operator!(r529);
bool operator&&(bool, r530);
}

Due to the presence of the conversion operator FwdIter1(r8), FwdIter1& substi-
tutes for r8 in void operator=(FwdIter1&, r8). Similar r1 and r2 become con-
vertible to bool, thus the requirement r3 operator‖(r1, r2); is dropped.

The result of reduce may constrain the type system more than the original
set of requirements. Thus, reduce has to occur after merging all requirements
from potential callees, when all conversion requirements on types are available.

5 Recovery From Repository

Template libraries utilize concepts to constrain the template arguments of a
group of functions that operate on types with similar capabilities. This requires
clustering similar sets of requirements into concepts. We tackle this by using a
concept repository, which contains a number of predefined concept definitions
(e.g., core concepts or concepts that users define for specific libraries). The use
of a concept repository offers users the following benefits:

– reduces the number of concepts
– improves the structure of concepts
– exposes the refinement relationships of concepts, which allows for more exact

analysis
– replaces requirement results with named types (concrete, template depen-

dent, or associated typenames)

The repository we use to drive the examples in this sections contains the fol-
lowing concepts: IntegralType<T>, RegularType<T>, ForwardIterator<T>,
BidirectionalIterator<T>, RandomaccessIterator<T>, and EqualityComparable<T>.

5.1 Concept Kernel

In order to match the extracted requirements of each template argument against
concepts in the repository that depend on fewer template arguments, we par-
tition the unreduced set into smaller sets called kernels. We define a concept
kernel over a set of template arguments T̂ to be a subset of the original set of
requirements ζ.

kernel(ζfunction, T̂)→ ζkernel

ζkernel is a projection that captures all operations on types that directly or
indirectly originate from the template arguments in T̂ .

ζkernel ⇔ {op|op ∈ ζsrc, φT̂ (op)}

For the sake of brevity, we also say that a type is in ζkernel, if the type refers
to a result R of an operation in ζkernel.

φT̂ (op) =


1 true for a op(arg1, . . . , argn)→ res

if ∀i argi ∈ T̂ ∪ ζkernel ∪ C
0 otherwise

φT̂ (op) is true, if all arguments of op either are in T̂ , are result types from
operations in ζkernel, or are concrete.

As an example, we give the concept kernel for the first template argument of
search.

FwdIter1::FwdIter1(const FwdIter1&);
typename r1652;
r1652 operator==(FwdIter1&, FwdIter1&);
typename r1654;
r1654 operator!=(FwdIter1&, FwdIter1&);
operator bool (r1654);
operator bool (r1652);
void operator=(FwdIter1&, FwdIter1&);
typename r1658;
r1658 operator++(FwdIter1&);
typename r1659;
r1659 operator==(r1658, FwdIter1&);
operator bool (r1659);
typename r1661;
r1661 operator∗(FwdIter1&);

5.2 Concept Matching

For each function, TACE compares the kernels against the concepts in the repos-
itory. The mappings from a kernel’s template parameters to a concept’s template
parameters are generated from the arguments of the first operation in a concept
kernel and the parameter declarations of operations with the same name in the
concept.

For any requirement in the kernel, a concept has to contain a single best
matching requirement (multiple best matching signatures indicate an ambigu-
ity). Matching takes into account the usual C++ binding rules and all conversion
requirements defined in the concept. TACE checks the consistency of a con-
cept requirement’s result type with all conversion requirements in the kernel.

If checking succeeds, TACE updates the concept’s result type in the kernel’s
requirements.

For each kernel and concept pair, TACE partitions the requirements into
satisfiable, unsatisfiable, associated, and available functions. An empty set of
unsatisfiable requirements indicates a match. TACE can report small sets of
unsatisfiable requirements (i.e., near misses), thereby allowing users to mod-
ify the function implementation (or the concept in the repository) to make a
concept-function pair work together. The group of associated requirements con-
tains unmatched requirements on associated types. For example, any iterator
requires the value type to be regular. Besides regularity, some functions such as
lower bound require less than comparability of container elements. Associated re-
quirements are subsequently matched. The group of available functions contains
requirements, where generic implementations exist.

This produces a set of candidate concepts. For example, the three iterator
categories match the template parameters of search. find has two template ar-
guments. Any iterator concept matches the first argument. Every concept in the
repository matches the second argument.

TACE reduces the set of candidates by eliminating all refinements, for which
the refinee is also a candidate. In our case, the concepts for bidirectional- and
randomaccess- iterators are eliminated from the candidate set.

To eliminate more false positive matches, TACE also analyzes the candi-
date set in context of available functions. Any valid candidate, has to satisfy
the requirements of a callee’s candidate. Consider search’s (§3.4) call of find.
Any concept that does not match find’s first template parameter cannot match
search’s first parameter.

Conversely, for functions that continue having multiple candidates, TACE
eliminates those candidates that, if chosen, would invalidate callers. Consider
the function advance and its two implementations advance for input iterator
and bidirectional iterator. Besides the iterator concepts the template argument
of advance has a false positive match in number concepts (e.g., IntegralType).
advance employs the tag dispatching idiom, which requires an iterator. Thus,
TACE eliminates the non-iterator concepts from the candidates. This heuristic
elimination of candidates performs well for the standard template library.

If our tool deals with functions that use only independent template parame-
ters, the analysis is done and reported. For functions with more than one tem-
plate argument, TACE generates the concept requirements using a Cartesian
join of the results of the individual kernels. The following code snippet shows
the result for search.

concept Search<typename FwdIter1, typename FwdIter2> {
requires ForwardIterator<FwdIter1>;
requires ForwardIterator<FwdIter2>;

bool operator==(iterator traits<FwdIter1>::value type&,
iterator traits<FwdIter2>::value type&);

}

Note, that matching currently does not generate extra conversion require-
ments. Thus, the operator== with two different argument types does not match
the operator== defined in EqualityComparable<T>. We plan to address this issue
in the final version of the paper.

5.3 Families of Functions

A generic function can consist of a family of different implementations, where
each implementation exploits concept refinements (e.g., advance in §2).

A template that calls a generic function needs to incorporate the minimal
requirements of the generic function in its concept. To do so, it is necessary to
determine the most general implementation. Finding the base implementation
is non trivial with real code. Consider STL’s advance family. TACE extracts the
following requirements:

// for Input−Iterators
concept AdvInputIter <typename Iter, typename Dist> {

Dist::Dist(const Dist&);
void operator++(Iter&);
bool operator−−(Dist&, int);
}

// for Bidirectional−Iterators
concept AdvBidirectIter <typename Iter, typename Dist> {

Dist::Dist(const Dist&);
void operator++(Iter&);
void operator−−(Iter&);
bool operator++(Dist&, int);
bool operator−−(Dist&, int);
}

// for Randomaccess−Iterators
concept AdvRandomaccessIter <typename Iter, typename Dist> {

Dist::Dist(const Dist&);
void operator+=(Iter&, Dist&);
}

The sets of extracted requirements for the implementations based on input-
and bidirectional-iterator are in a subset/superset relation, the set of require-
ments for the random access iterator based implementation is disjoint with the
former sets.

If calls to generic functions where a refinement relationship cannot be in-
ferred occur under scenario §4, TACE requires the user mark the least specific
function implementation. A concept repository helps infer the correct refinement
relationship.

However, detecting the least specific implementation can still be problematic
for generic functions with a too general definition. Consider the implementations
of advance for input- and random access iterators.

// template <class InputIterator, Class Distance>

// void advance(InputIterator& iter, Distance dist);
void operator++(InputIterator&); // kernel(InputIterator)
Distance operator−−(Distance&,int); // kernel(Distance)
operator bool(Distance&); // kernel(Distance)

// template <class RandomaccessIter, Class Distance>
// void advance(RandomaccessIter& iter, Distance dist);
void operator+=(InputIterator&, Distance&); // multi−parametric

The kernel for RandomaccessIter is empty, thus any concept matches. After
eliminating false positive candidates, any iterator concept matches; the require-
ment operator+= becomes an operation that is defined over two independent
template arguments. Recent concept based STL implementations make the type
dependence between the two parameters explicit and TACE correctly identifies
the random access iterator concept.

6 Results

We validated the approach by matching the functions defined in GCC’s header
file algorithm. The file contains more than 9000 non-comment (and non empty)
lines of code and defines 115 algorithms plus about 100 helper functions. The
algorithm header exercises some of the most advanced language features and
design techniques used for generic programming in C++.

The success rate of the concept recovery depends on the concepts in the
repository. A repository containing syntactically similar concepts will lead to
ambiguous results. We ran the tests against the repository introduced in §5
plus concepts that are defined over multiple template arguments (UnaryFunction,
UnaryPredicate, BinaryFunction and BinaryPredicate). The predicates refine the
functions and require the return type be convertible to bool.

TACE found a number of functions, where the annotation in code overly con-
strain the template arguments, such as unguarded linear insert (STL’s speci-
fications are meaningful though, as the identified functions are helpers of algo-
rithms requiring random access.) A limitation of TACE’s current implementation
is that matching does not (and a static analysis tool cannot always) capture the
semantic level of concepts. Consider find end for bidirectional iterators, which
takes two different iterator types. The second iterator type requires only for-
ward access and the existence of advance(it, n). n’s possible negativity is what
requires bidirectional access. Over the entire test set, TACE currently recog-
nizes about 75% of iterator concepts correctly and unambiguously. For about
15% TACE produces a false positive match (e.g., Number) alongside the correct
iterator concept. TACE recognizes all binary functions, but due to the reason
stated at the end of §5.2 does not generate the conversion requirement on result
types. The predicates (including template arguments marked as Compare and
StrictWeakOrding) are identified correctly.

7 Related Work

Sutton and Maletic [22] describe an approach to match requirements against a set
of predefined concepts based on formal concept analysis. Their analysis tool finds
combinations of multiple concepts, if needed, to cover the concept requirements
of a template functions. In order to avoid complications from “the reality of C++
programming” [22], the authors validate their approach with a number of self
implemented STL algorithms, for which they obtain results that closely match
the C++ standard specification. The authors discuss how small changes in the
implementation can lead to small variations in their identified concepts. Their
work does not provide a formal description of constraint generation and does
not mention function families nor functions that utilize other generic functions.

Dos Reis and Stroustrup [8] present an alternative idea for concept specifica-
tion and checking. Their approach states concepts in terms of usage patterns, a
form of requirement specification that mirrors the declarations and expressions
in the template body that involve template arguments. If type checking of a con-
crete type against the usage pattern succeeds, then template instantiation will
succeed too. In essence, TACE reverses this process and derives the requirements
from C++ source code and converts them into signature based concepts.

The aim of type inference for dynamically typed languages, the derivation of
type annotations from dynamically typed code, is somewhat similar to concept
recovery. For example, Agesen et al [23]’s dynamic type inference on SELF gen-
erates local constraints on objects from method bodies. By analyzing edges along
trace graphs their analysis derives global constraints from local constraints. This
kind of analysis differs from our work in various ways. Agesen et al start at a spe-
cific entry point of a complete program (i.e., function main in a C++ program).
This provides concrete information on object instantiations from prototypes.
Concept recovery neither depends on a single entry point, nor does the analyzed
program have to be complete (instantiations are not required). Moreover, con-
cept recovery is not concerned with finding concrete type annotations, but with
finding higher level abstractions that describe multiple types (concepts). On the
semantic level, C++’s type system differs from dynamically typed languages. C++
allows automatic type conversions, overloading, and function results are typed.

8 Conclusion and Future Work

In this paper, we have presented our tool, TACE, that extracts sets of require-
ments from real C++ code. TACE analyzes these requirements and generates
concept definitions for functions. Alternatively, our tool clusters requirement
sets into concepts by matching against predefined concepts in a repository.

At the moment TACE can handle a large number of template functions
in STL. The Pivot provides an extensible compiler based framework that en-
ables enhancements of our analysis. In particular, obtaining analysis results for
template classes is necessary for the evaluation of compile time values (e.g.,
is scalar, tag hierarchies) that are often used to select a specific implementa-

tion from a generic function family.

TACE is part of a larger project to raise the level of abstraction of existing
C++ programs through the use of high-level program analysis and transforma-
tions.

References

1. Stepanov, A., McJones, P.: Elements of Programming. Addison-Wesley Profes-
sional (June 2009)

2. ISO/IEC 14882 International Standard: Programming languages: C++. American
National Standards Institute (September 1998)

3. Stroustrup, B.: The C++ Programming Language. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA (2000)

4. Stroustrup, B.: The design and evolution of C++. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA (1994)

5. Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Dos Reis, G., Lumsdaine, A.: Con-
cepts: linguistic support for generic programming in C++. In: OOPSLA ’06: Pro-
ceedings of the 21st annual ACM SIGPLAN conference on Object-oriented pro-
gramming systems, languages, and applications, New York, NY, USA, ACM Press
(2006) 291–310

6. Becker, P.: Working draft, standard for programming language C++. Technical
Report N2914 (June 2009)

7. Gregor, D., Stroustrup, B., Siek, J., Widman, J.: Proposed wording for concepts
(revision 4). Technical Report N2501, JTC1/SC22/WG21 C++ Standards Com-
mittee (February 2008)

8. Dos Reis, G., Stroustrup, B.: Specifying C++ concepts. In: POPL ’06: Con-
ference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, New York, NY, USA, ACM Press (2006) 295–308

9. Stroustrup, B.: Abstraction and the C++ machine model. In: ICESS’04: 1st Inter-
national Conference on embedded Software and Systems. Volume 3605 of Lecture
Notes in Computer Science., Springer (2004) 1–13

10. Austern, M.H.: Generic programming and the STL: using and extending the
C++ Standard Template Library. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1998)

11. Siek, J.G., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library: user guide and
reference manual. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (2002)

12. An, P., Jula, A., Rus, S., Saunders, S., Smith, T., Tanase, G., Thomas, N., Amato,
N., Rauchwerger, L.: Stapl: A standard template adaptive parallel C++ library.
In: LCPC ’01, Cumberland Falls, Kentucky (Aug 2001) 193–208

13. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools,
and Techniques from Boost and Beyond (C++ in Depth Series). Addison-Wesley
Professional (2004)

14. Alexandrescu, A.: Modern C++ design: generic programming and design patterns
applied. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001)

15. Järvi, J., Willcock, J., Hinnant, H., Lumsdaine, A.: Function overloading based on
arbitrary properties of types. C/C++ Users Journal (21(6)) (June 2003) 25–32

16. Siek, J., Lumsdaine, A.: Concept checking: Binding parametric polymorphism in
C++. In: First Workshop on C++ Template Programming, Erfurt, Germany.
(October 10 2000)

17. Stroustrup, B.: Expounds on concepts and the future of C++. Interview with
Danny Kalev (August 2009) www.devx.com/cplus/Article/42448/0/page/1, re-
trieved on October 1st, 2009.

18. Becker, P.: The C++ Standard Library Extensions: A Tutorial and Reference. 1st
edn. Addison-Wesley Professional, Boston, MA, USA (2006)

19. Dos Reis, G., Stroustrup, B.: A principled, complete, and efficient representation
of C++. In Suzuki, M., Hong, H., Anai, H., Yap, C., Sato, Y., Yoshida, H., eds.:
The Joint Conference of ASCM 2009 and MACIS 2009. Volume 22 of MI Lecture
Note Series., Fukuoka, Japan, COE (December 2009) 151–166

20. Järvi, J., Gregor, D., Willcock, J., Lumsdaine, A., Siek, J.: Algorithm specialization
in generic programming: challenges of constrained generics in C++. In: PLDI ’06:
Proceedings of the 2006 ACM SIGPLAN conference on Programming language
design and implementation, New York, NY, USA, ACM (2006) 272–282

21. Dos Reis, G., Stroustrup, B.: A C++ formalism. Technical Report N1885,
JTC1/SC22/WG21 C++ Standards Committee (2005)

22. Sutton, A., Maletic, J.I.: Automatically identifying C++0x concepts in function
templates. In: ICSM ’08: 24th IEEE International Conference on Software Main-
tenance, 2008, Beijing, China, IEEE (2008) 57–66

23. Agesen, O., Palsberg, J., Schwartzbach, M.: Type inference of SELF. In: ECOOP
’93: Proceedings of the 7th European Conference on Object-Oriented Program-
ming, London, UK, Springer (1993) 247–267

