
Design of Concept Libraries for C++

Andrew Sutton and Bjarne Stroustrup

Texas A&M University
Department of Computer Science and Engineering

{asutton, bs}@cse.tamu.edu

Abstract. We present a set of concepts (requirements on template arguments)
for a large subset of the ISO C++ standard library. The goal of our work is
twofold: to identify a minimal and useful set of concepts required to constrain
the library’s generic algorithms and data structures and to gain insights into how
best to support such concepts within C++. We start with the design of concepts
rather than the design of supporting language features; the language design must
be made to fit the concepts, rather than the other way around. A direct result of
the experiment is the realization that to simply and elegantly support generic pro-
gramming we need two kinds of abstractions: constraints are predicates on static
properties of a type, and concepts are abstract specifications of an algorithm’s
syntactic and semantic requirements. Constraints are necessary building blocks
of concepts. Semantic properties are represented as axioms. We summarize our
approach: concepts = constraints+ axioms. This insight is leveraged to de-
velop a library containing only 14 concepts that encompassing the functional,
iterator, and algorithm components of the C++ Standard Library (the STL). The
concepts are implemented as constraint classes and evaluated using Clang’s and
GCC’s Standard Library test suites.

Keywords: Generic programming, concepts, constraints, axioms, C++.

1 Introduction
Concepts (requirements on template arguments) are the central feature of C++ generic
library design; they define the terms in which a library’s generic data structures and
algorithms are specified. Every working generic library is based on concepts. These
concepts may be represented using specifically designed language features (e.g. [15,
20]), in requirements tables (e.g., [2,22]), as comments in the code, in design documents
(e.g., [21]), or simply in the heads of programmers. However, without concepts (formal
or informal), no generic code could work.

For example, a Matrix library that allows a user to supply element types must have
a concept of what operations can be used on its elements. In other words, the Matrix li-
brary has a concept of a “number,” which has a de facto definition in terms of operations
used in the library code. Interpretations of “number” can vary dramatically from library
to library. Is a polynomial function a number’? Are numbers supposed to support divi-
sion? Are operations on numbers supposed to be associative? Regardless, every generic
Matrix library has a “number” concept.

In this work, we experiment with designs for concepts by trying to minimize the
number of concepts required to constrain the generic algorithms and data structures of
a library. To do such experiments, we need ways to represent concepts in C++ code. Our
approach is to use constraint classes, which allows us to experiment with different sets
of concepts for a library without pre-judging the needs for specific language support
features. Once we have experimented with the design of concepts for several libraries,
we expect our criteria for concept design and use to have matured to the point where
we can confidently select among the reasonably well-understood language design alter-
natives. Language support should be determined by ideal usage patterns rather than the
other way around.

Previous work in the development of concept libraries has resulted in the definition
of large numbers of concepts to constrain comparatively few generic components. For
example, the last version of the C++ Draft Standard to include concepts [5] defined
130 concepts to constrain approximately 250 data structures and algorithms. Nearly
2/3rds of that library’s exported abstractions were concept definitions. Out of the 130
concepts, 108 relate are used to (directly or indirectly) express the functional, iterator,
and algorithms parts of the standard library that we address here. In comparison, the
Elements of Programming (EoP) book [34] covers similar material with 52 concepts
for about 180 different algorithms (just under 1/3rd).

Obviously, not all of the concepts in either publication are “equally abstract”. That
C++ Draft Standard includes about 30 concepts enumerating requirements on overload-
able operator‘s alone and several metaprogramming-like concepts such as Rvalue_of.
The EoP book lists many concepts that explore variations on a theme; invariants are
strengthened or weakened, operators are dropped, and definition spaces are restricted.
From these and similar designs of concepts, it has been concluded that writing a generic
library requires exhaustive enumeration of overloadable operations, conceptual support
for template metaprogramming, and massive direct language support for concepts.

Fortunately, such conclusions are false. Furthermore, they are obviously false. The
overwhelming majority of generic libraries, including the original version of STL, were
written without language support for concepts and used without enforcement mecha-
nisms. The authors of these libraries did not consider some hundred different concepts
during their development. Rather, the generic components of these libraries were writ-
ten to a small set of idealized abstractions.

We argue that generic libraries are defined in terms of small sets of abstract and
intuitive concepts, and that an effective specification of concepts is the product of an
iterative process that minimizes the number of concepts while maintaining expressive
and effective constraints. Ideal concepts are fundamental to their application domain
(e.g., String, Number, and Iterator), and consequently it is a rare achievement to find a
genuine new one. These abstract and intuitive concepts must not be lost in the details
needed to express them in code. Neither should the ease of learning and ease of use
offered by these concepts be compromised by an effort to minimize the constraints of
every algorithm.

To explore these ideas concretely, we develop a minimal design of the concepts for
the STL that encompasses its functional, iterator, and algorithm libraries. The resulting
concept library defines only 14 concepts, 94 fewer than originally proposed for the cor-

responding parts of the C++ Standard Library. We leverage the results of the experiment
and the experience gained to derive a novel perspective on concepts for the C++ pro-
gramming language. Our approach reveals a distinct difference between requirements
that represent domain abstractions and those that support their specification: concepts
and constraints, respectively. Concepts based on this distinction results in a conceptu-
ally simpler and more modular design.

We validate the design of the concepts by implementing them within the framework
of a concept emulation library for the Origin C++ Libraries [38]. The libraries are im-
plemented using the 2011 ISO C++ standard facilities. The concepts are then integrated
into the STL subset of Clang’s libc++ and GCC’s libstdc++ and checked against their
test suites for validation.

The results of this work yield several contributions to our knowledge of generic pro-
gramming. First, we demonstrate that it is both feasible and desirable to experiment to
seek a minimal conceptual specification for a generic library. Second, we demonstrate
that distinguishing between concepts (as abstractions) and constraints (as static require-
ments) is an effective way to achieve this goal. Third, we identify semantic properties,
axioms, as the key to practical discrimination of concepts from constraints. Finally, we
provide a simpler and easier to use specification of key parts of the ISO C++ standard
library.

2 Related Work

Generic programming is rooted in the ability to specify code that will work with a va-
riety of types. Every language supporting generic programming must address the issue
of how to specify the interface between generically written code and the set of concrete
types on which it operates. Several comparative studies have been conducted in support
for generic programming and type constraints [18]. These studies were leveraged to
support the definition of concepts for C++

ML relies on signatures to specify the interface of modules and constrain the type
parameters of functors [27]. Operations in the signature are matched against those de-
fined by a structure to determine conformance. In Haskell, type classes denote sets of
types that can be used with same operations [24]. A type is made a member of that
set by explicitly declaring it an instance and implementing the requisite operations.
Type classes are used as constraints on type parameters in the signatures of polymor-
phic functions. Similarities between Haskell type classes and C++ concepts have also
been explored [6, 7]. AXIOM categories are used to define the syntax and semantics
of algebraic domains [10]. The specification of algebraic structures helped motivate the
design of its category system [9, 11]. Requirements on type parameters in Eiffel, Java,
and C# are specified in terms of inherited interfaces. Checking the conformance of a
supplied type argument entails determining if it is a subtype of the required interface or
class [8, 25, 26, 41].

From the earliest days of the design of C++ templates, people have been looking
for ways to specify and constrain template arguments [35, 36]. For the C++0x stan-
dards effort two proposals (with many variants) were considered [15, 20]. A language
framework supporting generic programming was developed in support of these propos-
als [32, 33].

There has been less work on the design of concepts themselves (as opposed to
studying language support). The dominant philosophy of concept design has focused on
“lifting” algorithms from specific implementations to generic algorithms with specific
requirements on arguments [28]. However, applying the same process to the concepts
(iterative generalization) can lead to an explosion in the number of concepts as require-
ments are minimized for each algorithm in isolation. The (ultimately unsuccessful) de-
sign for C++0x included a carefully crafted and tested design for the complete C++0x
standard library including around 130 concepts [5]. In [13], Dehnert and Stepanov de-
fined properties of regular types and functions. Stepanov and McJones carefully worked
out a set of concepts for their variant of the STL in EoP [34]; Dos Reis implemented
verification for those and found a few improvements [14].

Other research has focused on the use of concepts or their expression in source code.
Bagge and Haveraaen explored the use of axioms to support testing and the semantic
specification of algebraic concepts [4]. Pirkelbauer et al [29] and Sutton and Maletic
[40] studied concepts through mechanisms for automatically extracting requirements
from actual source code. Also, many aspects of concepts can be realized idiomatically
in C++0x [12, 39]; this is the basis of our implementation in this work.

3 Requirements for Concept Design

The immediate and long-term goals of this research are to develop an understanding
of the principles of concepts and to formulate practical guidelines for their design. A
midterm goal is to apply that understanding to the design of language features to support
the use of concepts, especially in C++.

Here, we present an experiment in which we seek a conceptual specification for
the STL that defines a minimum number of concepts. This goal is in stark contrast to
previous work [5] where the explicit representation of even the subtlest distinctions in
requirements was the ideal.

The minimization aspect of the experiment constrains the design in such a way that
the resulting concepts must be abstract and expressive. A concept represents a generic
algorithm’s requirements on a type such as a Number or an Iterator. A concept is a
predicate that can be applied to a type to ascertain if it meets the requirements embodied
by the concept. An expressive concept, such as Iterator, allows a broad range of related
expressions on a variety of types. In contrast, a simple syntactic requirement, such as
requiring default construction, is a constraint on implementers and does not express a
general concept.

The effect of this minimization is ease of learning and ease use. In particular, it
provides library designers and users with a simple, strong design guideline that could
never be achieved with (say) 100 primitive requirements (primitive in the mathematical
sense). The design of a concept library is the result of two minimization problems:
concept and constraint minimization.

Concept minimization seeks to find the smallest set of concepts that adequately rep-
resent the abstractions of a generic library. The problem is na?vely solved by defining
a single concept that satisfies the requirements of all templates. For example, mutable
random-access iterators work with practically all STL algorithms so a minimum con-
cept specification might simply be a Random_access_iterator. This would result in

over-constrained templates and make many real-world uses infeasible. For example, a
linked-list cannot easily and economically support random access and an input stream
cannot support random access at all. Conversely, the popular object-oriented notion of
a universal Object type under-constrains interfaces, so that programmers have to rely
on runtime resolution, runtime error handling, and explicit type conversion.

Constraint minimization seeks to find a set of constraints that minimally constrain
the template arguments. This problem is na?vely solved by naming the minimal set of
type requirements for the implementation of an algorithm. If two algorithms have non-
identical but overlapping sets of requirements, we factor out the common parts, which
results in three logically minimal sets of requirements. This process is repeated for all
algorithms in a library. Concepts developed in this manner resemble the syntactic con-
structs from which they are derived; the number of concepts is equal to the number of
uniquely typed expressions in a set of the algorithms. This results in the total absence
of abstraction and large numbers of irregular, non-intuitive concepts. In the extreme,
every implementation of every algorithm needs its own concept, thus negating the pur-
pose of “concepts” by making them nothing but a restatement of the requirements of a
particular piece of code.

Effective concept design solves both problems through a process of iterative refine-
ment. An initial, minimal set of concepts is defined. Templates are analyzed for re-
quirements. If the initial set of concepts produces overly strict constraints, the concept
definitions must be refactored to weaken the constraints on the template’s arguments.
However, the concepts must not be refactored to the extent that they no longer represent
intuitive and potentially stable abstractions.

4 Concepts = Constraints + Axioms
Previous work on concepts use a single language mechanism to support both the ab-
stract interfaces (represented to users as concepts) and the queries about type properties
needed to eliminate redundancy in concept implementations. From a language-technical
point of view, that makes sense, but it obscures the fundamental distinction between
interface and implementation of requirements. Worse, it discourages the programmer
from making this distinction by not providing language to express the distinction. We
conclude that we need separate mechanisms for the definition of concepts and for their
implementation.

We consider three forms of template requirements in our design:

– Constraints define the statically evaluable predicates on the properties and syntax
of types, but do not represent cohesive abstractions.

– Axioms state semantic requirements on types that should not be statically evaluated.
An axiom is an invariant that is assumed to hold (as opposed required to be checked)
for types that meet a concept.

– Concepts are predicates that represent general, abstract, and stable requirements of
generic algorithms on their argument. They are defined in terms of constraints and
axioms.

Constraints are closely related to the notion of type traits, metafunctions that evalu-
ate the properties of types. We choose the term “constraint” over “trait” because of the

varied semantics already associated the word “trait.” The word “constraint” also em-
phasizes the checkable nature of the specifications. The terms “concept” and “axiom”
are well established in the C++ community [1, 2, 5, 16, 18, 22, 34, 39].

Constraints and axioms are the building blocks of concepts. Constraints can be used
to statically query the properties, interfaces, and relationships of types and have direct
analogs in the Standard Library as type traits (e.g., is_const, is_constructible, is_-
same). In fact, a majority of the concepts in C++0x represent constraints [5].

Axioms specify the meaning of those interfaces and relationships, type invariants,
and complexity guarantees. Previous representations of concepts in C++ define axioms
as features expressed within concepts [5,16]. In our model, we allow axioms to be writ-
ten outside of concept specifications, not unlike properties in the EoP book [34]. This
allows us to distinguish between semantics that are inherent to the meaning of a concept
and those that can be stated as assumed by a particular algorithm. The distinction also
allows us to recombine semantic properties of concepts without generating lattices of
semantically orthogonal concepts, which results in designs with (potentially far) fewer
concepts.

The distinctive property that separates a concept from a constraint is that it has
semantic properties. In other words, we can write axioms for a concept, but doing so
for a constraint would be farfetched. This distinction is (obviously) semantic so it is
possible to be uncertain about the classification of a predicate, but we find that after
a while the classification becomes clear to domain experts. In several cases, the effort
to classify deepened our understanding of the abstraction and in four cases the “can
we state an axiom?” criterion changed the classification of a predicate, yielding—in
retrospect—a better design. These improvements based on the use of axioms were in
addition to the dramatic simplifications we had achieved using our earlier (less precise)
criteria of abstractness and generality.

Our decision to differentiate concepts and constraints was not made lightly, nor
was the decision to allow axioms to be decoupled from concepts. These decisions are
the result of iteratively refining, balancing, and tuning concepts for the STL subject to
the constraints of the experiment. These insights, once made, have resulted in a clear,
concise, and remarkably consistent view of the abstractions in the STL. The distinction
between concepts, constraints, and axioms is a valuable new design tool that supports
modularity and reuse in conceptual specifications. We expect the distinction to have
implications on the design of the language support for concepts. For example, if we
need explicit modeling statements (concept maps [20]; which is by no means certain),
they would only be needed for concepts. Conversely, many constraints are compiler
intrinsic [22]. These two differences allow for simpler compilation model and improved
compile times compared to designs based on a single language construct [5, 19].

As an example of the difference, consider the C++0x concepts HasPlus, HasMi-
nus, HasMultiply, and HasDivide. By our definition, these are not concepts. They are
nothing but requirements that a type has a binary operator +, -, *, and, /, respectively.
No meaning (semantics) can be ascribed to each in isolation. No algorithm could be
written based solely on the requirement of an argument type providing (say) - and *. In
contrast, we can define a concept that requires a combination of those (say, all of them)

with the usual semantics of arithmetic operations conventionally and precisely stated as
axioms. Such concepts are the basis for most numeric algorithms.

It is fairly common for constraints to require just a single operation and for a con-
cept to require several constraints with defined semantic relationships among them.
However, it is quite feasible to have a single-operation concept and, conversely, a multi-
operation constraint. For example, consider the interface to balancing operations from
a framework for balanced-binary tree implementations [3]:

constraint Balancer<typename Node> {
void add_fixup(Node*);
void touch(Node*);
void detach(Node*);

}

This specifies the three functions that a balancer needs to supply to be used by the
framework. It is clearly an internal interface of little generality or abstraction; it is an
implementation detail. If we tried hard enough, we might come up with some semantic
specification (which would depend on the semantics of Node), but it would be unlikely
to be of use outside this particular framework (where it is used in exactly one place).
Furthermore, it would be most unlikely to survive a major revision and extension of
the framework unchanged. In other words, the lack of generality and the difficulty of
specifying semantic rules are strong indications that Balancer is not a general concept,
so we make it a constraint. It is conceivable that in the future we will understand the
application domain well enough to support a stable and formally defined notion of a
Balancer and then (and only then) would we promote Balancer to a concept by adding
the necessary axioms. Partly, the distinction between concept and constraint is one of
maturity of application domain.

Constraints also help a concept design accommodate irregularity. An irregular type
is one that almost meets requirements but deviates so that a concept cannot be written
to express a uniform abstraction that incorporates the irregular type. For example, os-
tream_iterator and vector<bool>::iterator are irregular in that their value type cannot
be deduced from their reference type. Expression templates are paragons of irregularity:
they encode fragments of an abstract syntax tree as types and can support lazy evalu-
ation without additional syntax [42]. We can’t support every such irregularity without
creating a mess of “concepts” that lack proper semantic specification and are not stable
(because they essentially represent implementation details). However, such irregular it-
erators and expression templates are viable type arguments to many STL algorithms.
Constraints can be used to hide these irregularities, thus simplifying the specification of
concepts. A long-term solution will have to involve cleaner (probably more constrained)
specification of algorithms.

5 Concepts for the STL
Our concept design for the STL is comprised of only 14 concepts, 17 supporting con-
straints, and 4 independent axioms. These are summarized in Table 1.

We present the concepts, constraints, and axioms in the library using syntax similar
to that developed for C++0x [5, 15, 20]. The syntax used in this presentation can be
mapped directly onto the implementation, which supports our validation method. Also,

Table 1. Concepts, constraints, and axioms

Concepts Constraints
Regularity Iterators Operators Language

Comparable Iterator Equal Same
Ordered Forward_iterator Less Common

Copyable Bidirectional_iterator Logical_and Derived
Movable Random_access_iterator Logical_or Convertible
Regular Logical_not Signed_int

Callable
Functional Types Initialization Other
Function Boolean Destructible Procedure
Operation Constructible Input_iterator
Predicate Assignable Output_iterator
Relation

Axioms
Equivalence_relation

Strict_weak_order
Strict_total_order
Boolean_algebra

the concept and constraint names are written as we think they should appear when used
with language support, not as they appear in the Origin library.

To distinguish C++ from purely object-oriented or purely functional type systems,
we preface the presentation of these concepts with a summary view of values and ob-
jects within the context of the C++ type system. In brief, a value is an abstract, im-
mutable element such as the number 5 or the color red. An object resides in a specific
area of memory (has identity) and may hold a value. In C++, values are represented by
rvalues: literals, temporaries, and constant expressions (constexpr values). Objects are
lvalues that support mutability in the forms of assignment and move (i.e., variables).
Objects are uniquely identified by their address. A constant of the form const T is an
object that behaves like a value in that it is immutable, although it still has identity. A
reference is an alias to an underlying value (rvalue reference) or object (lvalue refer-
ence). In order for our design to be considered viable, it must address the differences
between the various kinds of types in the C++ type system [37].

5.1 Regular Types
In our design, all abstract types are rooted in the notion of regularity. The concept Reg-
ular appears in some form or other in all formalizations of C++ types [22, 32, 34]; it
expresses the notion that an object is fundamentally well behaved, e.g. it can be con-
structed, destroyed, copied, and compared to other objects of its type. Also, Regular
types can be used to define objects. Regularity is the foundation of the value-oriented
semantics used in the STL, and is rooted in four notions: Comparability, Order, Mov-
ability, and Copyability. Their representation as concepts follow.

concept Comparable<typename T> {
requires constraint Equal<T>; // syntax of equality
requires axiom Equivalence_relation<equal<T>, T>; // semantics of equivalence

template<Predicate P>

axiom Equality(T x, T y, P p) {
x==y => p(x)==p(y); // if x==y then for any Predicate p, p(x) == p(y)

}
axiom Inequality(T x, T y) {

(x!=y) == !(x==y); // inequality is the negation of equality
}

}

The Comparable concept defines the notion of equality comparison for its type ar-
gument. It requires an operator == via the constraint Equal, and the meaning of that
operator is imposed by the axiom Equivalence_relation. The Equality axiom defines
the actual meaning of equality, namely that two values are equal if, for any Predicate,
the result of its application is equal. We use the C++0x axiom syntax with the=> (im-
plies) operator added [16]. The Inequality axiom connects the meaning of equality to
inequality. If a type defines == but does not a corresponding !=, we can automatically
generate a canonical definition according to this axiom (as described in Sect. 6). The
Inequality axiom requires that user-defined != operators provide the correct semantics.

We define the notion of Order similarly:

concept Ordered<Regular T> {
requires constraint Less<T>;
requires axiom Strict_total_order<less<T>, T>;
requires axiom Greater<T>;
requires axiom Less_equal<T>;
requires axiom Greater_equal<T>;

}

We factor out the axioms just to show that we can, and because they are examples
of axioms that might find multiple uses:

template<typename T>
axiom Greater(T x, T y) {

(x>y) == (y<x);
}
template<typename T>
axiom Less_equal(T x, T y) {

(x<=y) == !(y<x);
}
template<typename T>
axiom Greater_equal(T x, T y) {

(x>=y) == !(x<y);
}

As with Comparable, the definition of requirements is predicated on a syntactic
constraint (Less) and a semantic requirement (Strict_total_order). Obviously, not all
types inherently define a total order; IEEE 754 floating point values define only a partial
order when considering NaN values. Because this is an axiom and can’t be proven by a
C++ compiler, we are allowed to assume that it holds. The required axioms connect the
meaning of the other relational operations to <.

concept Copyable<Comparable T> {
requires constraint Destructible<T> && Constructible<T, const T&>

axiom Copy_equality(T x, T y) {
x==y => T{x}==y && x==y; // copy construction copies (non-destructively)

}
};

A Copyable type is both copy constructible and Comparable. The Copy_equality
axiom states that a copy of an object is equal to its original. Copyable (and also Mov-
able) types must be Destructible, ensuring that the program can destroy the constructed
objects.

concept Movable<typename T> {
requires constraint Destructible<T> && Constructible<T, T&&>

axiom Move_effect(T x, T y) {
x==y => T{move(x)}==y && can_destroy(x); // original is valid but unspecified

}
}

A Movable type is move constructible. Moving an object puts the moved-from ob-
ject in a valid but unspecified state. The C++0x axiom syntax provides no way of ex-
pressing “valid but unspecified” so we introduce the primitive predicate can_destroy()
to express that requirement.

A Regular type can be used to create objects, declare variables, make copies, move
objects, compare values, and default-construct. In essence, the notion of regularity de-
fines the basic set operations and guarantees that should be available for all value-
oriented types.

concept Regular<typename T> {
requires Movable<T> && Copyable<T>;
requires constraint Constructible<T> // default construction

&& Assignable<T, T&&> // move assignment
&& Assignable<T, const T&>; // copy assignment

axiom Object_equality(T& x, T& y) {
&x==&y => x==y; // identical objects have equal values

}
axiom Move_assign_effect(T x, T y, T& z) {

x==y => (z=move(x))==y && can_destroy(x); // original is valid but unspecified
}
axiom Copy_assign_equality(T x, T& y) {

(y = x) == x; // a copy is equal to the original
}

}

The Object_equality axiom requires equality for identical objects (those having
the same address). The Move_assign_effect and Copy_assign_equality axioms ex-

tend the semantics of move and copy construction to assignment. Note that the require-
ment of assignability implies that const-qualified types are not Regular. Furthermore,
volatile-qualified types are not regular because they cannot satisfy the Object_equality
axiom; the value of a volatile object may change unexpectedly. These design decisions
are intentional. Objects can be const- or volatile-qualified to denote immutability or
volatility, but that does not make their value’s type immutable or volatile. Also, includ-
ing assignment as a requirement for Regular types allows a greater degree of freedom
for algorithm implementers. Not including assignability would mean that an algorithm
using temporary storage (e.g., a variable) would be required state the additional require-
ment as part of its interface, leaking implementation details through the user interface.

We note that Order is not a requirement of Regular types. Although many regular
types do admit a natural order, others do not (e.g., complex<T> and thread), hence the
two concepts are distinct.

This definition is similar to those found in previous work by Dehnert and Stepanov
[13] and also by Stepanov and McJones [34] except that the design is made modular
in order to accommodate a broader range of fundamental notions. In particular, these
basic concepts can be reused to define concepts expressing the requirements of Value
and Resource types, both of which are closely related to the Regular types, but have
restricted semantics. A Value represents pure (immutable) values in a program such
as temporaries or constant expressions. Values can be copy and move constructed, and
compared, but not modified. A Resource is an object with limited availability such
an fstream, or a unique_ptr. Resources can be moved and compared, but not copied.
Both Values and Resources may also be Ordered. We omit specific definitions of these
concepts because they were not explicitly required by any templates in our survey; we
only found requirements for Regular types.

By requiring essentially all types to be Regular, we greatly simplify interfaces and
give a clear guideline to implementers of types. For example, a type that cannot be
copied is unacceptable for our algorithms and so is a type with a copy operator that
doesn’t actually copy. Other design philosophies are possible; the STL’s notion of type
is value-oriented; an objected-oriented set of concepts would probably not have these
definitions of copying and equality as part of their basis.

5.2 Type Abstractions

There are a small number of fundamental abstractions found in virtually all programs:
Boolean, Integral, and Real types. In this section, we describe how we might define
concepts for such abstractions. We save specific definitions for future work, pending
further investigation and experimentation.

The STL traditionally relies on the bool type rather than a more abstract notion,
but deriving a Boolean concept is straightforward. The Boolean concept describes a
generalization of the bool type and its operations, including the ability to evaluate ob-
jects in Boolean evaluation contexts (e.g., an if statement). More precisely, a Boolean
type is a Regular, Ordered type that can be operated on by logical operators as well
as constructed over and converted to bool values. The Boolean concept would require
constraints for logical operators (e.g., Logical_and) and be defined by the semantics of
the Boolean_algebra axiom.

Other type abstractions can be found in the STL’s numeric library, which is com-
prised of only six algorithms. Although we did not explicitly consider concepts in the
numeric domain, we can speculate about the existence and definition of some concepts.
A principle abstraction in the numeric domain is the concept of Arithmetic types, those
that can be operated on by the arithmetic operators +, *, -, and / with the usual semantics,
which we suspect should be characterized as an Integral Domain. As such, all integers,
real numbers, rational numbers, and complex numbers are Arithmetic types. Stronger
definitions are possible; an Integral type is an Arithmetic type that also satisfies the se-
mantical requirements of a Euclidean Domain. We note that Matrices are not Arithmetic
because of non-commutative multiplication.

The semantics of these concepts can be defined as axioms on those types and their
operators. Concepts describing Groups, Rings, and Fields for these types should be
analogous to the definition of Boolean_algebra for Boolean types. We leave the exact
specifications of these concepts as future work as a broader investigation of numeric
algorithms and type representations is required.

5.3 Function Abstractions

Functions and function objects (functors) are only “almost regular” so we cannot define
them in terms of the Regular concept. Unlike regular types, functions are not default
constructible and function objects practically never have equality defined. Many so-
lutions have been suggested such as a concept Semiregular or implicitly adding the
missing operations to functions and function objects.

To complicate matters, functions have a second dimension of regularity determined
by application equality, which states that a function applied to equal arguments yields
equal results. This does not require functions to be pure (having no side effects), only
that any side effects do not affect subsequent evaluations of the function on equal argu-
ments. A third property used in the classification of functions and function objects is the
homogeneity of argument types. We can define a number of mathematical properties for
functions when the types of their arguments are the same.

To resolve these design problems, we define two static constraints for building
functional abstractions: Callable and Procedure. The Callable constraint determines
whether or not a type can be invoked as a function over a sequence of argument types.
The Procedure constraint establishes the basic type requirements for all procedural and
functional abstractions.

constraint Procedure<typename F, typename... Args> {
requires constraint Constructible<F, F const&> // has copy construction

&& Callable<F, Args...>; // can be called with Args...
typename result_type = result_of<F(Args...)>::type;

}

Procedure types are both copy constructible and callable over a sequence of argu-
ments. The variadic definition of this concept allows us to write a single constraint for
functions of any arity. The result_type (the codomain) is deduced using result_of.

There are no restrictions on the argument types, result types or semantics of Proce-
dures; they may, for example, modify non-local state. Consequently, we cannot spec-
ify meaningful semantics for all procedures, and so it is static constraint rather than

a concept. A (random number) Generator is an example of a Procedure that takes no
arguments and (probably) returns different values each time it is invoked.

A Function is a Procedure that returns a value and guarantees application equiva-
lence and deterministic behavior. It is defined as:

concept Function<typename F, typename... Args> : Procedure<F, Args...> {
requires constraint !Same<result_type, void>; // must return a value

axiom Application_equality(F f, tuple<Args...> a, tuple<Args...> b) {
(a==b) => (f(a...)==f(b...)); // equal arguments yield equal results

}
}

The Application_equality axiom guarantees that functions called on equal argu-
ments yield equal results. This behavior is also invariant over time, guaranteeing that
the function always returns the same value for any equal arguments. The syntax a...
denotes the expansion of a tuple into function arguments. The hash function parameter
of unordered containers is an example of a Function requirement.

An Operation is a Function whose argument types are homogeneous and whose
domain is the same as its codomain (result type):

concept Operation<typename F, Common... Args> : Function<F, Args...> {
requires sizeof...(Args) != 0; // F must take at least one argument
typename domain_type = common_type<Args?>::type;
requires constraint Convertible<result_type, domain_type>;

}

From this definition, an Operation is a Function accepting a non-empty sequence
of arguments that share a Common type (defined in Sect 6). The common type of
the function’s argument types is called the domain_type. The result_type (inherited
indirectly from Procedure) must be convertible to the domain_type.

Note that the concept’s requirements are not applied directly to F and its argument
types. Instead, the concept defines a functional abstraction over F and the unified do-
main type. Semantics for Operations are more easily defined when the domain and
result type are interoperable. This allows us to use the Operation concept as the basis
of algebraic concepts, which we have omitted in this design. We note that many of the
function objects in the STL’s functional library generate Operation models (e.g., less,
and logical_and).

Parallel to the three functional abstractions Procedure, Function, and Operation,
we define two predicate abstractions: Predicate and Relation. A Predicate is a Function
whose result type can be converted to bool. Predicates are required by a number of STL
algorithms; for example, any algorithm ending in _if requires a Predicate (e.g., find_-
if). This specification also matches the commonly accepted mathematical definition of a
predicate and is a fundamental building block for other abstractions functional abstrac-
tions. A Relation is a binary Predicate. The axioms Strict_weak_order and Strict_to-
tal_order are semantic requirements on the Relation concept. These concepts are easily
defined, and their semantics are well known.

5.4 Iterators

The distinction between concept and constraint has a substantial impact on the tradi-
tional iterator hierarchy [22]. We introduce a new general Iterator concept as the base
of the iterator hierarchy. The input and output aspects of the previous hierarchy are
relegated to constraints.

An Iterator is a Regular type that describes an abstraction that can “move” in a
single direction using ++ (both pre- and post-increment) and whose referenced value
can be accessed using unary *. The concept places no semantic requirements on either
the traversal operations or the dereferencing operation. In this way, the Iterator concept
is not dissimilar from the ITERATOR design pattern [17], except syntactically. As with
the previous designs, there are a number of associated types. Its definition follows:

concept Iterator<Regular Iter> {
typename value_type = iterator_traits<Iter>::value_type;
Movable reference = iterator_traits<Iter>::reference;
Signed_int difference_type = iterator_traits<Iter>::difference_type;
typename iterator_category = iterator_traits<Iter>::iterator_category;

Iter& Iter::operator++(); // prefix increment: move forward
Dereferenceable Iter::operator++(int); // postfix increment
reference Iter::operator*(); // dereference

}

Here, the pre-increment operator always returns a reference to itself (i.e., it yields an
Iterator). In contrast, the result of the post-increment operator only needs to be Deref-
erenceable. The weakness of this requirement accommodates iterators that return a
state-caching proxy when post-incremented (e.g., ostream_iterator). The Movable re-
quirement on the reference type simply establishes a basis for accessing the result. This
also effectively requires the result to be non-void.

The definition presented here omits requirements for an associated pointer type and
for the availability of ->: the arrow operator. The requirements for -> are odd and con-
ditionally dependent upon the iterator’s value type [15]. In previous designs, the ->
requirement was handled as an intrinsic; that’s most likely necessary.

Forward, Bidirectional, and Random Access Iterators have changed little in this de-
sign. These concepts refine the semantics of traversal for Iterators. However, Input Iter-
ators and Output Iterators have been “demoted’ to constraints (see below). A Forward
Iterator is a multi-pass Iterator that abstracts the traversal patterns of singly-linked lists:

concept Forward_iterator<typename Iter> : Iterator<Iter> {
requires constraint Convertible<iterator_category, forward_iterator_tag>;
requires constraint Input_iterator<Iter>;

Iter Iter::operator++(int); // postfix increment---strengthen Iterator’s requirement

axiom Multipass_equality(Iter i, Iter j) {
(i == j) => (++i == ++j); // equal iterators are equal after moving

}

axiom Copy_preservation(Iter i) {
(++Iter{i}, *i) == *i; // modifying a copy does not invalidate the original

}
}

An Input_iterator only requires its reference type to be convertible to its value type.
For a Forward_iterator this requirement strengthened so that, like the pre-increment
operator, its post-increment must return an Iterator. The two axioms specify the se-
mantic properties of multi-pass iterators: equivalent iterators will be equivalent after
incrementing and incrementing a copy of an iterator does not invalidate the original.

Finally (and notably), Forward_iterators are statically differentiated from Input_-
iterators by checking convertibility of their iterator categories. This allows the compiler
to automatically distinguish between models of the two concepts without requiring a
concept map (as was needed in the C++0x design). Consider:

template<typename T, Allocator A>
class vector {

template<Iterator Iter>
vector(Iter first, Iter last) { // general version (uses only a single traversal)

for(; first != last; ++first)
push_back(*first);

}
template<Forward_iterator Iter>
vector(Iter first, Iter last) {

resize(first, last); // traverse once to find size
copy(first, last, begin()); // traverse again to copy

}
};

The vector’s range constructor is optimized for Forward_Iterators. However, this
is not just a performance issue. Selecting the wrong version leads to serious semantic
problems. For example, invoking the second (multi-pass) version for an input stream it-
erator would cause the system to hang (wait forever for more input). With the automatic
concept checking enabled by the Convertible requirement, we leverage the existing it-
erator classification to avoid this problem.

A Bidirectional Iterator is a Forward Iterator that can be moved in two directions
(via ++ and –). It abstracts the notion of traversal for doubly linked lists:

concept Bidirectional_iterator<Iter> : Forward_iterator<Iter> {
Iter& Iter::operator--(); // prefix decrement: move backwards
Iter Iter:: operator--(int); // postfix decrement

axiom Bidirectional(Iter i, Iter j) {
i==j => --(++j)==i;

}
}

A Random Access Iterator is an Ordered Bidirectional Iterator that can be moved
multiple “jumps” in constant time; it generalizes the notion of pointers:

concept Random_access_iterator<Ordered Iter> : Bidirectional_iterator<Iter> {
Iter& operator+=(Iter, difference_type);
Iter operator+(Iter, difference_type);
Iter operator+(difference_type, Iter);
Iter& operator-=(Iter, difference_type);
Iter operator-(Iter, difference_type);
difference_type operator-(Iter, Iter); // distance
reference operator[](difference_type n); // subscripting

axiom Subscript_equality(Iter i, difference_type n) {
i[n] == *(i + n); // subscripting is defined in terms of pointer arithmetic

}
axiom Distance_complexity(Iter i, Iter j) {

runtime_complexity(i - j)==O(1); // the expression i-j must be constant time
}

}

The requirements on the result type of the decrement operators are analogous to the
requirements for increment operators of the Forward_iterator concept. The Random_-
access_iterator concept requires a set of operations supporting random access (+ and
-). Of particular interest are the requirement on Ordered and the ability to compute the
distance between two iterators (in constant time) via subtraction. Semantically, the Sub-
script_equality axiom defines the meaning of the subscript operator in terms of pointer
arithmetic. The Distance_complexity axiom requires the computation of distance in
constant time. Similar requirements must also be stated for random access addition and
subtraction, but are omitted here. Here, runtime_complexity and O are intrinsics used
to describe complexity requirement.

Input_iterator and Output_iterator are defined as constraints rather than concepts.
To allow proxies, their conversion and assignment requirements are expressed in terms
of a type “specified elsewhere.” The C++0x design relies on associated types, which are
expressed as member types. These are implicit parameters that cannot be universally
deduced from the iterator. As is conventional, we rely on type traits to support this
association. A constrained template or other concept must be responsible for supplying
the external argument. However, our definition provides the obvious default case (the
iterator’s value type):

constraint Input_iterator<typename Iter, typename T = value_type<Iter>> {
requires constraint Convertible<iterator_traits<Iter>::reference, T>;

}
constraint Output_iterator<typename Iter, typename T = value_type<Iter>&&> {

requires constraint Assignable<iterator_traits<Iter>::reference, T>;
}

Here, we assume that value_type<Iter> is a template alias yielding the appropriate
value type. The constraints for Input_iterator and Output_iterator support the ability
to read an object of type T and write an object of type T respectively.

6 Constraints

In this section, we give an overview of constraints that have been described in previous
sections. Many discussed thus far have direct corollaries in the C++ Standard Library
type traits or are easily derived; they are basically a cleaned-up interface to what is
already standard (and not counted as concepts in any design). Several that we have used
in our implementation are described in Table 2.

Table 2. Type constraints

Constraint Definition
Same<Args...> Defined in terms of is_same
Common<Args..> True if common_type<Args...> is valid
Derive<T, U> is_base_of<T, U>
Convertible<T, U> is_convertible<T, U>
Signed_int<T> is_signed<T, U>

The Same constraint requires that all argument types be the same type. It is a vari-
adic template that is defined recursively in terms of is_same. The Common constraint
requires its argument types to all share a common type as defined by the language re-
quirements of the conditional operator (?:). Finding the common type of a set of types
implies that all types in that set can be implicitly converted to that type. This directly
supports the definition of semantics on the common type of a function’s arguments for
the Operation concept. Derived and Convertible are trivially defined in terms of their
corresponding type traits. We note that Signed_int is a constraint because its definition
is closed: only built-in signed integral types satisfy the requirement (e.g., int, and long).

Constraints describing the syntax of construction, destruction, and assignment are
given in Table 3, and constraints describing overloadable operators in Table 4. The
constraints for construction, destruction, and assignment are trivially defined in terms
of existing type traits. The operator constraints require the existence of overloadable
operators for the specified type parameters and may specify conversion requirements
on their result types. For binary operators, the second parameter defaults to the first so
that, say, Equal<T> evaluates the existence of operator==(T, T).

Table 3. Constraints for object initialization

Constraint Definition
Destructible<T> is_destructible<T>
Constructible<T, Args..> is_constructible<T, Args...>
Assignable<T, U> is_assignable<T, U>

The Equal and Less constraints require their results to be bool, which allows the
constrained expression to be evaluated in a Boolean evaluation context. The other op-
erators do not impose constraints on their result types because we cannot reasonably
define universally applicable conversion requirements for all uses of those operators. In
essence, these constraints are purely syntactic; any meaning must be imposed by some
other concept or template.

Table 4. Constraints for overloadable operators

Constraint Definition
Equal<T, U=T> bool operator==(T, U)
Less<T, U=T> bool operator<(T, U)
Logical_and<T, U=T> auto operator&&(T, U)
Logical_or<T, U=T> auto operator||(T, U)
Logical_not<T> auto operator!(T)
Derefernce<T> auto operator*(T)

7 Implementation and Validation

We implemented the described concepts and traits by building a custom library of
constraint classes in C++11. Our approach blends traditional techniques for imple-
menting constraint classes [31] with template metaprogramming facilities [1]. The re-
sult is a lightweight concept emulation library that can be used to statically enforce
constraints on template parameters and supports concept overloading using concept-
controlled polymorphism (enable_if) [23]. The library is implemented as a core com-
ponent of the Origin Libraries [38].

To simplify experimentation, the library does not differentiate between concepts
and constraints except through naming conventions. Concepts names in the implemen-
tation are written cConcept, constraint names are written tConstraint (“t” stands for
“type property”) and axioms, aAxiom. This naming convention is chosen for the imple-
mentation so that it will not collide with “real” concepts when defined with language
support. For example, the Constructible constraint described in 6 is implemented in
Origin as tConstructible:

template<typename T, typename... Args>
struct tConstructible {

tConstructible() { auto p = constraints; }

static void constraints(Args... args) {
T{forward<Args>(args)...}; // use pattern for copy construction

}

typedef tuple<std::is_constructible<T, Args...>> requirements;
typedef typename requires_all<requirements>::type type;
static constexpr bool value = type::value;

};

tConstructible is a constraint because no sensible semantics can be defined for
construction, beyond what the language already guarantees for constructors. The tCon-
structible constructor is responsible for instantiating the constraints function, which
contains the use patterns for the concept, which are similar to those introduced in [15].
The function parameters of the constraints function introduce objects, which simplifies
the writing of use patterns.

The type and value members satisfy the requirements of a type trait or Boolean
metafunction. These members, especially value, are used to reason about the type at

compile time without causing compiler errors. This is used to select between overloads
based on modeled satisfied requirements using enable_if [23].

All concepts in the library are automatically checked. Implementing a concept li-
brary that requires users to write explicit concept maps would require us to do so for
every data structure tested. That approach is not needed for the STL and, in our opinion,
does not scale well. Axioms are not (and cannot be) checked by the compiler so for our
validation we treat them as comments.

Function template requirements are specified by explicit constructions of temporary
objects. For example:

template<typename T>
T const& min(T const& x, T const& y) {

cOrdered<T>{}; // requires that T has operators <, >, <=, and >=
return y < x ? y : x;

}

Here cOrdered<T> denotes a requirement on the template parameter T. Instanti-
ating the algorithm entails instantiating the cOrdered<T> constructor and its nested
requirements. Compilation terminates if a constraint class is instantiated with template
arguments that do not satisfy the required use patterns.

For class templates, the requirements are specified as base classes. For example:

template<typename T> class Vector : private cRegular<T> { /* ... */ };

This ensures that the compiler instantiates the concept checks when constructing
objects of the constrained class. Requirements within constraint classes are written in
exactly the same way: explicit construction is used in conjunction with use patterns,
and inheritance is used to emulate concept refinement.

There are no memory or performance costs induced by the use of Origin’s constraint
classes. Constraint instances are optimized out of the generated code either through
dead-code elimination or the empty base optimization. Compile times can be increased
marginally but are no worse than using any other concept checking library.

We applied the constraint classes to a subset of the Clang and GCC implementa-
tions of the Standard Library: the functional, algorithm, and iterator components (the
STL). Class and function template constraints were written for each data structure and
algorithm exported by those components. We iteratively refined both the concepts and
the constraints as required by the limits of the experiment.

We use the libraries’ test suites (just over 9,000 programs at the time of writing) to
check the correctness of the concepts. A more substantial validation of our design could
be achieved by compiling a large number of C++ applications against the modified
libraries, but the test suite cover a sufficient number of instantiations so we are confident
in the design.

Test suite failures generally indicated overly strict constraints on a type or algo-
rithm. In some cases, such failures also indicated what we perceive as problems with
the original conceptual specification for the library. In such cases, these failures are due
to the representation of irregular types as legitimate concepts. For example, strict out-
put iterators such as ostream_iterator are Iterators in principle but are neither default
constructible nor equality comparable. We modified these irregular cases so they would

model the required concepts. There are only four such iterators in the STL, and they are
easily adapted to model our proposed concepts.

8 Conclusions
We studied concept design rather than language design for expressing concepts with
the aim of bringing empirical evidence to the center of language design discussions.
We found that explicitly differentiating between concepts and constraints based on se-
mantic requirements (axioms) improved our analyses and clarified long-standing “dark
corners” of the STL design. It led to spectacular simplification and a dramatic reduction
in the number of concepts needed to describe the STL interfaces (14 rather than 108).
The STL interfaces were already considered well understood after more than a decade’s
use and much analysis, so we conclude that our concept design technique is nowhere
near as obvious as it seems in retrospect. Our technique is rooted in classical algebraic
theory, so we further conjecture that it will be very widely applicable.

Our conclusions on language design for concepts are, as we expected them to be,
very tentative. However, we have demonstrated a central role for axioms, a feature that
was widely conjectured to be unnecessary during the C++0x design. Beyond that, we
found constraints classes so expressive and manageable in our implementation that we
want to re-examine the use-pattern approach for expressing syntactic requirements.

We continue to investigate concepts for the C++ Standard Library by broadening our
conceptual analysis to cover numeric and scientific computing domains and containers.
With Origin, we are pursuing concepts related to heaps and graphs [30]. Exploring con-
ceptual designs in different domains supports language design by addressing a broader
set of use cases. In particular, we plan to examine uses of concepts in algorithm speci-
fications with the aim of simplifying such specifications.

Concepts are abstract, general, and meaningful. Consequently, they are unlikely
to be specific to a specific library. As concepts mature, they become a repository of
fundamental domain knowledge. Thus, we expect concepts to cross library boundaries
to become more widely useful. We expect that our exploration of the definition and
use of concepts will decrease the total number of concepts (among all libraries) while
improving their quality and utility.

Acknowledgements
Thanks to Matt Austern, Paul McJones, Gabriel Dos Reis, and Alex Stepanov for com-
ments that led to major improvements and will be the basis for further work. This project
was partially supported by NSF grants A3350-32525-CS and A0040-32525-CS and
Award KUS-C1-016-04, made by King Abdullah University of Science and Technol-
ogy (KAUST).

References
1. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming: Concepts, Tools, and Tech-

niques from Boost and Beyond. C++ In-Depth, Addison Wesley (2004)
2. Austern, M.: Generic Programming and the STL: Using and Extending the C++ Standard

Template Library. Addison-Welsey Longman, Boston, Massachusetts, 7th edn. (1998)

3. Austern, M., Stroustrup, B., Thorup, M., Wilkinson, J.: Untangling the Balancing and
Searching of Balanced Binary Search Trees. Software: Practice and Experience 33(13),
1273–1298 (2003)

4. Bagge, A.H., David, V., Haveraaen, M.: The Axioms Strike Back: Testing with Concepts and
Axioms in C++. In: 8th International Conference on Generative Programming and Compo-
nent Engineering (GPCE’09). pp. 15–24. Denver, Colorado (2010)

5. Becker, P.: Working Draft, Standard for the Programming Language C++. Tech. Rep. N2914,
ISO/IEC JTC 1, Information Technology Subcommittee SC 22, Programming Language
C++ (2009)

6. Bernardy, J.P., Jansson, P., Zalewski, M., Schupp, S., Priesnitz, A.: A Comparison of C++
Concepts and Haskell Type Classes. In: Workshop on Generic Programming (WGP’08). pp.
37–48. Victoria, Canada (2008)

7. Bernardy, J.P., Jansson, P., Zalewski, M., Schupp, S.: Generic Programming with C++ Con-
cepts and Haskell Type Classes–A Comparison. Journal of Functional Programming 20(3-4),
271–302 (2010)

8. Bracha, G., Odersky, M., Stoutamire, D., Wadler, P.: Making the Future Safe for the Past:
Adding Genericity to the Java Programming Language. In: 13th ACM SIGPLAN conference
on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA’98). pp.
183–200. Vancouver, Canada (1998)

9. Davenport, J.H., Gianni, P.M., Trager, B.M.: Scratchpad’s View of Algebra II: A Categorical
View of Factorization. In: International Symposium on Symbolic and Algebraic Computa-
tion (ISSAC’91). pp. 32–38. Bonn, Germany (1991)

10. Davenport, J.H., Sutor, R.S.: AXIOM: The Scientific Computation System. Springer (1992)
11. Davenport, J.H., Trager, B.M.: Scratchpad’s View of Algebra I: Basic Commutative Alge-

bra. In: International Symposium on Design and Implementation of Symbolic Computation
Systems (DISCO’90). pp. 40–54. Capri, Italy (1990)

12. David, V.: Concepts as Syntactic Sugar. In: 9th International Working Conference on Source
Code Analysis and Manipulation (SCAM’09). pp. 147–156. Alberta, Canada (2009)

13. Dehnert, J., Stepanov, A.: Fundamentals of Generic Programming. In: International Seminar
on Generic Programming. vol. 1766, pp. 1–11. Springer, Dagstuhl Castle, Germany (1998)

14. Dos Reis, G.: Personal Communication (Oct 2010)
15. Dos Reis, G., Stroustrup, B.: Specifying C++ Concepts. In: 33rd Symposium on Principles

of Programming Languages (POPL’06). pp. 295–308. Charleston, South Carolina (2006)
16. Dos Reis, G., Stroustrup, B., Merideth, A.: Axioms: Semantics Aspects of C++ Concepts.

Tech. Rep. N2887, ISO/IEC JTC 1, Information Technology Subcommittee SC 22, Program-
ming Language C++ (2009)

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns Elements of Reusable
Object-Oriented Software. Addison Wesley (1994)

18. Garcia, R., Järvi, J., Lumsdaine, A., Siek, J., Willcock, J.: An Extended Comparative Study
of Language Support for Generic Programming. Journal of Functional Programming 17,
145–205 (2007)

19. Gregor, D.: ConceptGCC (2008), http://www.generic-
programming.org/software/ConceptGCC/

20. Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Dos Reis, G., Lumsdaine, A.: Concepts: Linguis-
tic Support for Generic Programming in C++. In: ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA’06). pp. 291–310.
Portland, Oregon (2006)

21. Hewlett-Packard: Standard Template Library Programmer’s Guide (1994),
http://www.sgi.com/tech/stl/index.html

22. International Organization for Standards: International Standard ISO/IEC 14882. Program-
ming Languages — C++ (2003)

23. Järvi, J., Willcock, J., Lumsdaine, A.: Concept-Controlled Polymorphism. In: 2nd Interna-
tional Conference on Generative Programming and Component Engineering (GPCE’03). pp.
228–244. Erfurt, Germany (2003)

24. Jones, M.P.: Type Classes with Functional Dependencies. In: 9th European Symposium on
Programming (ESOP’00). pp. 230–244. Berlin, Germany (2000)

25. Kennedy, A., Syme, D.: Design and Implementation of Generics for the .NET Common Lan-
guage Runtime. In: ACM SIGPLAN 2001 Conference on Programming Language Design
and Implementation (PLDI’01). pp. 1–12. Snowbird, Utah (2001)

26. Meyer, B.: Eiffel : The Language. Prentice-Hall (1991)
27. Milner, R., Harper, R., MacQueen, D., Tofte, M.: The Definition of Standard ML - Revised.

The MIT Press (1997)
28. Musser, D., Stepanov, A.: Algorithm-oriented Generic Libraries. Software: Practice and Ex-

perience 24(7), 623–642 (1994)
29. Pirkelbauer, P., Dechev, D., Stroustrup, B.: Support for the evolution of C++ generic func-

tions. In: 3rd International Conference on Software Language Engineering (SLE’10). pp.
123–142. Eindhoven, the Netherlands (2010)

30. Siek, J., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library: User Guide and Reference
Manual. Addison-Wesley (2001)

31. Siek, J., Lumsdaine, A.: Concept Checking: Binding Parametric Polymorphism in C++. In:
1st Workshop on C++ Template Programming. Erfurt, Germany (2000)

32. Siek, J., Lumsdaine, A.: Essential Language Support for Generic Programming. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI’05).
pp. 73–84. Chicago, Illinois (2005)

33. Siek, J., Lumsdaine, A.: Language Requirements for Large-scale Generic Libraries. In:
4th International Conference on Generative Programming and Component Engineering
(GPCE’05). pp. 405–421. Tallinn, Estonia (2005)

34. Stepanov, A., McJones, P.: Elements of Programming. Addison Wesley, Boston, Mas-
sachusetts (2009)

35. Stroustrup, B.: Parameterized Types for C++. Computing Systems 2(1), 55–85 (1989)
36. Stroustrup, B.: The Design and Evolution of C++. Addison-Wesley (1994)
37. Stroustrup, B.: "New" Value Terminology (2010), http://www2.research.att.com/ bs/termi-

nology.pdf
38. Sutton, A.: Origin C++0x Libraries (2011), http://code.google.com/p/origin
39. Sutton, A., Holeman, R., Maletic, J.I.: Identification of Idiom Usage in C++ Generic Li-

braries. In: 18th International Conference on Program Comprehension (ICPC’10). pp. 160–
169. Braga, Portugal (2010)

40. Sutton, A., Maletic, J.I.: Automatically Identifying C++0x Concepts in Function Templates.
In: 24th International Conference on Software Maintenance (ICSM’04). pp. 57–66. Beijing,
China (2008)

41. Torgersen, M., Hansen, C.P., Ernst, E., von der Ahé, P., Bracha, G., Gafter, N.: Adding Wild-
cards to the Java Programming Language. In: ACM Symposium on Applied Computing
(SAC’04). pp. 1289–1296. Nicosia, Cyprus (2004)

42. Veldhuizen, T.: Expression Templates. C++ Report 7(5), 26–31 (1995)

