

FEATURE BJARNE STROUSTRUP
C++ – an Invisible
 Foundation of Everything
What is C++ and why do people still use it? Bjarne Stroustup
provides a short note answering these questions.
am often asked variations of the questions ‘What is C++?’ and ‘Is C++
still used anywhere?’ My answers tend to be detailed, focused on the
long term, and slightly philosophical, rather than simple, fashionable,

and concrete. This note attempts a brief answer. It presents C++ as ‘a stable
and evolving tool for building complex systems that require efficient use
of hardware’. Brief answers are necessarily lacking in depth, subtlety, and
detail – for detailed and reasoned explanations backed by concrete
examples, see ‘References and resources’ on page 10. This note is mostly
direct or paraphrased quotes from those sources.

Overview
This note consists of:

 Aims and means – the high-level aims of C++’s design and its role
in systems

 Use – a few examples of uses of C++ focusing on its foundational
uses

 Evolution – the evolutionary strategy for developing C++ based on
feedback

 Guarantees, Language, and Guidelines – the strategy for
simultaneously achieving evolution, stability, expressiveness, and
complete type-and-resource safety

 People – a reminder of the role of people in software development

 References and resources – an annotated list of references that can
lead to a deeper understanding of C++

 Appendix – a very brief summary of C++’s key properties and
features

Aims and means
C++ was designed to solve a problem. That problem required management
of significant complexity and direct manipulation of hardware. My initial
ideals for C++ included

 The efficiency of C for low-level tasks

 Simula’s strict and extensible type system

What I did not like included

 C’s lack of enforcement of its type system

 Simula’s non-uniform treatment of built-in types and user-
defined types (classes)

 Simula’s relatively poor performance

 Both languages’ lack of parameterized types (what later became
templates)

This set off a decades-long quest to simultaneously achieve

 Expressive code

 Complete type-and-resource safety

 Optimal performance

I did not want a specialized tool just for my specific problem (support for
building a distributed system), but a generalization to solve a large class
of problems:

 C++ is a tool for building complex systems that require efficient
use of hardware

That’s a distillation of my initial – and current – aims for C++. Suitably
fleshed out with details and implications, this explains much about modern
C++. That statement is not a snappy slogan of the form C++ is an
<<adjective>> language but I have never found a sufficiently accurate and
descriptive adjective for that. Shifting the focus from language use to
language technicalities, we can say:

 C++ is a general-purpose language for the definition and use of
light-weight abstractions

That leaves the definition of ‘general-purpose’, ‘light-weight’, and
‘abstraction’ open to debate. In C++ terms, I am primarily thinking about
classes, templates, and concepts; about expressiveness and efficient use of
time and space.

To elaborate a bit further:

 C++ supports building resource-constrained applications and
software infrastructure

 C++ supports large-scale software development

 C++ supports completely type-and-resource-safe code

Technically, C++ rests on two pillars:

 A direct map to hardware

 Zero-overhead abstraction in production code

By ‘zero-overhead’, I mean that roughly equivalent functionality of a
language feature or library component cannot by expressed with less
overhead in C or C++:

 What you don’t use, you don’t pay for (aka ‘no distributed fat’)

 What you do use, you couldn’t hand-code any better (e.g.,
dynamic dispatch)

It does not mean that for a more-specific need you can’t write more
efficient code (say in assembler).

Use
Many well-known applications/systems are written in C++ (e.g., Google
search, most browsers, Word, the Mars Rovers, Maya). All systems need
to use hardware and large systems must manage complexity. Supporting
those fundamental needs has allowed C++ to prosper over decades :

 C++ is an invisible foundation of everything

I

Bjarne Stroustrup Bjarne is the designer and original implementer
of C++. To make C++ a stable and up-to-date base for real-world
software development, he has stuck with its ISO standards effort
for almost 30 years (so far). You can contact him via his website:
www.stroustrup.com.
8 | Overload | February 2021

FEATUREBJARNE STROUSTRUP

C++ was designed to solve a problem. That
problem required management of significant

complexity and direct manipulation of hardware
‘Everything’ is obviously a bit of an exaggeration, but even systems
without a line of C++ tend to depend on systems written in C++.
‘Everything’ is a good first approximation.

Foundational uses of C++ are typically invisible, often even to
programmers of systems relying on C++: to be usable by many, a complex
system must protect its users from most complexities. For example, when
I send a message, I don’t want to know about message protocols,
transmission systems, signal processing, task scheduling, processor
design, or provisioning. Thus, we find C++ in virtual machines (HotSpot,
V8), numerics (Eigen, ROOT), AI/ML (TensorFlow, PyTorch), graphics
and animation (Adobe, SideFx), communications (Ericsson, Huawei,
Nokia), database systems (Mongo, MySQL), finance (Morgan Stanley,
Bloomberg), game engines (Unity, Unreal), vehicles (Tesla, BMW,
Aurora), CAD/CAM (Dassault, Autodesk), aerospace (Space-X,
Lockheed Martin), microelectronics (ARM, Intel, Nvidia), transport
(CSX, Maersk), biology and medicine (protein folding, DNA sequencing,
tomography, medical monitoring), embedded systems (too many to
mention), and much more that we never see and typically don’t think of –
often in the form of libraries and toolkits usable from many languages. C++
is also key in components and implementations of many different
programming languages (GCC, LLVM).

We also find C++ in ‘everyday’ applications, such as coffee machines and
pig-farm management. However, the role as a foundation for systems,
tools, and libraries has critical implications for C++’s design, use, and
further evolution.

Evolution
Since its inception, C++ has been evolving. That reflects both necessity
and an early deliberate choice:

 No language is perfect for everything and for everybody (that
includes C++)

 The world changes (e.g., there were no mobile apps until about
2005)

 We change (e.g., few industrial programmers appreciated generic
programming in 1985)

Thus

 C++ must evolve to meet changing requirements and uses

 Design decisions must be guided by real-world use – all good
engineering relies on feedback

To evolve, C++ must

 Offer stability – organizations that deliver and maintain systems
lasting for decades can’t constantly rewrite their systems to keep up
with incompatible changes to their foundations.

 Be viable at all times – must be effective for problems in its domain
at all times; you can’t take a ‘gap year’ from improving the language
and its implementation.

 Be directed by a set of ideals – to remain coherent, the
development of language features must be guided by a framework
of principles and long-term aims.

Why continue to evolve after years of success? There never was a shortage
of people who would prefer to stay with C or move to one of the latest
fashionable languages. People can to do exactly that if it makes sense to
them, but

 C++ is a good solution to a wide range of problems

 There are hundreds of billions of lines of working C++ code ‘out
there’

 There are millions of C++ programmers

It takes significant time for a language to mature to be adequate for a range
of uses far beyond the understanding of its original designers. Some design
tensions are inherent

 Every successful language will eventually face the problem of
evolution vs. stability

 Every general-purpose language must serve both (relative)
novices and seasoned experts

Successful language design – like all successful engineering – requires
good fundamental ideas and a careful balancing of constraints. Optimizing
for just a single desirable property can offer advantages for one application
area for one moment of time, but eventually the result dies for lack of
adaptability. By now, C++ has survived for 40 years by carefully balancing
concerns, learning from experience, and avoiding chasing fashions.

 A general-purpose language must maintain a careful balance of
user needs

Essential concerns that must be balanced include:

 simplicity, expressiveness, safety, run-time performance,
support for tool building, ease of teaching, maintainability,
composability of software from different sources, compilation
speed, predictability of response, portability, portability of
performance, and stability

‘Simplicity’ refers to how ideas are expressed in source code,
‘expressiveness’ determines the range of uses, ‘safety’ to type safety and
absence of resource leaks, and ‘predictability’ is essential for many
embedded systems.

Guarantees, language, and guidelines
C++ is complicated, but people don’t just want a simpler language, they
also want improvements and stability:

 Simplify C++

 Add these new features

 Don’t break my code

These are reasonable requests so we need a way out of this ‘trilemma’. We
cannot simplify the language without breaking billions of lines of code and
February 2021 | Overload | 9

FEATURE BJARNE STROUSTRUP
seriously disrupt millions of users. However, we can dramatically simplify
the use of C++:

 Keep simple tasks simple

 Ensure that nothing essential is impossible or unreasonably
expensive

To do that

 Provide simpler alternatives for simple uses

 Provide simplifying generalizations

 Provide alternatives to error-prone or slow features

Often, a significant improvement involves a combination of those three.

 Design C++ code to be tunable

A high-level abstraction presents a simple, safe, and general interface to
users. When needed, a user – not just a language implementer – can provide
an alternative implementation or an improved solution. This can
sometimes lead to orders-of-magnitude performance improvements and/
or enhanced functionality. By using lower-level or alternative abstractions,
we can eventually get to use the hardware directly, sometimes even to
directly access special-purpose hardware (e.g., GPUs or FPGAs).

From the earliest days, a major aim for the evolution of C++ was to deliver

 Complete type-and-resource safety

Much of the evolution of C++ can be seen as gradually approaching that
ideal, starting with adding function declarations (function prototypes) to
C. By ‘type safety’, I mean complete static (compile-time) checks that an
object is used only according to its defined type augmented by guaranteed
run-time checks where static checking is infeasible (e.g., range checking).
Simula offered that but at significant cost implying lack of applicability
in key areas.

 Making the type system both strict and flexible is key to
correctness, safety, and performance

Type-safety is not everything, though:

 Correctness, safety, and performance are system properties, not
just language features

 A type-safe program can still contain serious logic errors

 Test early, often, and systematically

To simplify use, we need tools and guidelines. The C++ Core Guidelines
(see ‘References and resources’ on page 10) offer rules for simple, safe,
and performant use:

 No resource leaks (incl. no leaks of non-memory resources, such as
locks and thread handles)

 No memory corruption (an essential pre-condition for any
guarantee)

 No garbage collector (to avoid indirections in access, memory
overheads, and collection delays)

 No limitation of expressiveness (compared to well-written modern
C++)

 No performance degradation (compared to well-written modern
C++)

These guarantees cannot be provided for arbitrarily complex C++ code.
Therefore, the Core Guidelines include rules to ensure that static analysis
can offer the needed guarantees. The guidelines are a key part of my
strategy for a gradual evolution of C++:

 Improve C++ by adding language features and libraries

 Maintain stability/compatibility

 Provide a variety of strong guarantees through selectively
enforced guidelines

The Core Guidelines are in production use, often supported by static
analysis. The guidelines can be enforced by a compiler, but the aim is not
to impose a single style of use on the whole C++ community. That would
fail because of the widely varying needs and styles of use. By default,
enforcement must be selective and optional. A separate static analyzer –

usable with any ISO C++ compatible implementation – would be ideal. If
a specific ‘dialect’ (that is, a specific set of rules and enforcement profiles)
is to be enforced, it can be done through control of the build process
(possibly supported by compiler options).

People
Code is written by people. A programming language is a tool, just one part
of a tool chain for a technical community. This was recognized from the
start. Here is the opening statement of the first edition of The C++
Programming Language:

C++ is a general-purpose programming language designed to make
programming more enjoyable for the serious programmer.

By ‘serious programmer’ I meant ‘people who build systems for the use
of others’. This concern for the human side of system development has also
been expressed as:

 Design and programming are human activities; forget that and
all is lost

C++ serves a huge community. To improve software, we need not just to
improve the language. We must also bring the community along –
supported by education, libraries, and tools. This must be done carefully
because no individual can know every use of C++ or every user need.

References and resources
B. Stroustrup: ‘Thriving in a crowded and changing world: C++ 2006-

2020’ ACM/SIGPLAN History of Programming Languages
conference, HOPL-IV. June 2020. This is the best current description
of C++’s aims, evolution, and status. At 160 pages, it is not a quick
read. Available at https://dl.acm.org/doi/abs/10.1145/3386320

H. Hinnant, R. Orr, B. Stroustrup, D. Vandevoorde, M. Wong:
DIRECTION FOR ISO C++ . WG21 P2000. 2020-07-15. Outlines
the direction of C++’s evolution, co-authored and continuously
updated by the ISO C++ Standard committee’s Direction Group as a
guide to members. Available at http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2020/p2000r2.pdf

B. Stroustrup: The Design and Evolution of C++ Addison Wesley, ISBN
0-201-54330-3. 1994. This book contains lists of design rules for
C++, some early history, and many code examples.

B. Stroustrup: A Tour of C++ (2nd Edition) ISBN 978-0134997834.
Addison-Wesley. 2018. A brief – 210 page – tour of the C++
Programming language and its standard library for experienced
programmers.

B. Stroustrup: Programming – Principles and Practice Using C++ (2nd
Edition). Addison-Wesley. ISBN 978-0321992789. May 2014. A
programming text book aimed at beginners who want eventually to
become professionals.

The C++ Core Guidelines. A set of guidelines for safe and effective use
of modern C++. Many of the guidelines are enforceable through
static analysis. 2014-onwards. Available at https://github.com/
isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

Infographic: C/C++ Facts We Learned Before Going Ahead with CLion.
A 2015 report on a survey of C++ use, estimating the C++ user
community to be 4.5 million strong and listing major industrial use.
Today, there are more users. Available at https://blog.jetbrains.com/
clion/2015/07/infographics-cpp-facts-before-clion/

B. Stroustrup, H. Sutter, and G. Dos Reis: ‘A brief introduction to C++’s
model for type- and resource-safety’. Isocpp.org. October 2015. An
early summary of the aims of the core guidelines as they relate to type
safety and resource safety. Available at https://www.stroustrup.com/
resource-model.pdf

B. Stroustrup: How can you be so certain? P1962R0. 2019-11-18. A
caution against shallow arguments for fashionable causes. Language
design requires a certain amount of humility. Available at http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1962r0.pdf
10 | Overload | February 2021

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2000r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2000r2.pdf
https://www.stroustrup.com/tour2.html
https://www.stroustrup.com/programming.html
https://dl.acm.org/doi/abs/10.1145/3386320
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/
https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/
https://www.stroustrup.com/resource-model.pdf
https://www.stroustrup.com/resource-model.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1962r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1962r0.pdf

FEATUREBJARNE STROUSTRUP
B. Stroustrup: Remember the Vasa! P0977r0. 2018-03-06. A note of
warning about overenthusiastic ‘improvement’ of the language.
Available at https://www.stroustrup.com/P0977-remember-the-
vasa.pdf

The C++ Foundation’s Website describes the organization and progress
of the standards effort. https://isocpp.org/std

www.stroustrup.com offers many of my videos, papers, interviews, and
quotes, including:

 My CppCon’14 keynote: ‘Make Simple Tasks Simple!’ at
https://www.youtube.com/watch?v=nesCaocNjtQ

 My Cppcon’17 keynote: ‘Learning and Teaching Modern C++’ at
https://www.youtube.com/watch?v=fX2W3nNjJIo

 My Cppcon’19 Keynote: ‘C++20: C++ at 40’ at
https://www.youtube.com/watch?v=u_ij0YNkFUs&t=235s

 Lex Fridman’s 2019 ‘Interview with Bjarne Stroustrup’ at
https://www.youtube.com/watch?v=uTxRF5ag27A&t=1s

Appendix: The C++ language
The description of C++ above does not mention any language features or
give any code examples. This leaves it open to serious misinterpretation.
I cannot give serious examples of good code here – see ‘References and
resources’ on page 10 – but I can summarize.

There is a reasonably stable core of ideals that guides the evolution of C++
(the references are to my 2020 ‘History of Programming Languages’ paper):

 A static type system with equal support for built-in types and
user-defined types (§2.1)

 Value and reference semantics (§4.2.3)

 Systematic and general resource management (RAII) (§2.2)

 Support for efficient object-oriented programming (§2.1)

 Support for flexible and efficient generic programming
(§10.5.1)

 Support for compile-time programming (§4.2.7)

 Direct use of machine and operating system resources (§1)

 Concurrency support through libraries (often implemented
using intrinsics) (§4.1) (§9.4)

Key language features with their primary intended roles:

 Functions – the basic way of defining a named action. Functions
with different types can have the same name. The function invoked
is then chosen based on the type of its arguments.

 Overloading – allowing semantically similar operations on
different types is a key to generic programming.

 Operator overloading – a function can be defined to give meaning
to an operator for a given set of operand types. Overloadable
operators includes the usual arithmetic and logical operators plus ()
(application), [] (subscripting), and -> (member selection).

 Classes – user-defined types that can approach built-in types for
ease of use, style of use, and efficiency, while opening up a whole
new world of general and application-specific types. Classes offer
(optional) encapsulation without run-time cost. Class objects can be
allocated on the stack, in static memory, in dynamic (heap) memory,
or as members of other classes.

 Constructors and destructors – the key to C++’s resource
management and much of its simplicity of code. A constructor can
establish an invariant for a class and a destructor can release any
resources an object has acquired during its lifetime. Systematic
resource management using constructors and destructors is often
called RAII (‘Resource Acquisition Is Initialization’).

 Class hierarchies – the ability to define one class in terms of
another so that the base class can be used as an interface to derived
classes or as part of the implementation of derived classes. The key
to traditional object-oriented programming.

 Virtual functions – provide run-time type resolution within class
hierarchies.

 Templates – allow types, functions, and aliases to be parameterized
by types and values. The workhorse of C++ generic programming.

 Concepts – compile-time predicates on sets of types and values.
Mostly used as precise specifications of a template’s requirements
on its parameters, thereby allowing overloading. A concept taking a
single type argument is roughly equivalent to a type, except that it
does not specify object layout.

 Function objects – objects of classes (often class templates)
supporting an application operator (). Acts like functions but are
objects that can carry state.

 Lambdas – a notation for defining function objects.

 Immutability – immutable objects can be defined. Access through
pointers or references can be declared to be non-mutating.

 Modules – a mechanism for encapsulating a set of types, functions,
and objects with a well-defined interface offering good information
hiding. To use a module, you import it. A program can be composed
out of modules.

 Namespaces – for separating major components of a program and
avoiding name clashes.

 Exceptions – for signaling errors that cannot be handled locally.
The backbone of much error handling. Exceptions are integrated
with constructors and destructors to enable systematic resource
management.

 Type deduction – to simplify notation by not requiring the
programmer to repeat what the compiler already knows. Essential
for generic programming and simple expression of ideas.

 Compile-time functions – part of comprehensive support for
compile-time programming.

 Concurrency – lock-free programming, threads, and coroutines.

 Parallelism – parallel algorithms.

In addition, there is a relatively large and useful standard library and loads
of other libraries. Don’t try to write everything yourself in the bare
language. 

Acknowledgements
This note is mostly direct or paraphrased quotes from the referenced
papers, so many thanks to the contributors to those as listed in their
acknowledgement sections. Also thanks to Gabriel Dos Reis, J.C. van
Winkel, Herb Sutter, J-Daniel Garcia, Roger Orr and the unnamed
Overload reviewers who made constructive comments on earlier drafts.
February 2021 | Overload | 11

https://www.stroustrup.com/P0977-remember-the-vasa.pdf
https://www.stroustrup.com/P0977-remember-the-vasa.pdf
https://isocpp.org/std
https://www.stroustrup.com/
https://www.youtube.com/watch?v=nesCaocNjtQ
https://www.youtube.com/watch?v=fX2W3nNjJIo
https://www.youtube.com/watch?v=u_ij0YNkFUs&t=235s
https://www.youtube.com/watch?v=uTxRF5ag27A&t=1s

	In. Sub. Ordinate.
	A Case Against Blind Use of C++ Parallel Algorithms
	C++ – an Invisible Foundation of Everything
	Test Precisely and Concretely
	Afterwood

