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ABSTRACT

Over the past decade, C++ has become the most commonly used language for intro-
ducing object-oriented programming and other abstraction techniques into production
software. During this period, C++ has evolved to meet the challenges of production sys-
tems. In this, C++ differs radically from languages that come primarily from academic or
research environments, and from less widely used languages. Although C++ has also
been extensively used in academia and for research, its evolution was driven primarily by
feedback from its use in industrial applications.

In this paper, we focus on three design areas key to successful C++ use. In doing so, we
explore fundamental C++ concepts and facilities and present distinctive C++ design and
programming styles that have evolved to cope with the stringent demands of everyday
systems building. First we explore C++’s support for concrete data types and containers
and give examples of how the C++ generic programming facilities, together with well-
designed libraries, can yield flexibility and economy of expression. Next we examine
some uses of class hierarchies, touching on issues including encapsulation, interface
design, efficiency, and maintainability. Finally, we note that languages succeed for rea-
sons that are not entirely technical and review the background for C++’s success.

This paper is not a C++ tutorial. However, it does include enough code examples and
supporting commentary that readers familiar with programming languages in general but
unfamiliar with C++ can grasp the key C++ language constructs and programming tech-
niques.

1 Introduction

C++ was designed to combine the strengths of C as a systems programming language with Simula’s facili-
ties for organizing programs. During the 60’s and 70’s, the key concepts, techniques, and language features
for what came to be known as ‘‘object-oriented programming’’ and ‘‘object-oriented design’’ had devel-
oped in connection with the Simula language. During the 80’s, C’s close-to-the-machine semantics gave it
the edge in run-time and space efficiency, portability, and flexibility that established C as the dominant sys-
tems programming language.

Thus C++ started from a sound theoretical and practical basis. Feedback from widespread use guided its
further evolution. C++ supports the design and efficient implementation of elegant programs from toy
examples to very large systems.

Over the years, distinct C++ styles of design and programming have evolved. This evolution has pro-
gressed to the point where we can identify and explore key notions and techniques.
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2 Extending C’s Model of Systems Programming

A fundamental property of computers in widespread use has remained remarkably constant: memory is a
sequence of words or bytes, indexed by integers called addresses. Modern machines—say, designed during
the last 20 years—have in addition tended to support directly the notion of a function call stack. Further-
more, all popular machines have some important facilities, such as input-output, that do not fit well into the
conventional byte- or word-oriented model of memory or computation. These facilities may require special
machine instructions or access to ‘‘memory’’ locations with peculiar addresses. Either way, from a
higher-level language point of view the use of these facilities is ‘‘messy’’ and machine-architecture-
specific.

C is by far the most successful language designed to exploit such computers by providing the program-
mer with a programming model that closely matches the machine model. C directly provides language-
level and machine-architecture-independent notions that directly map to the key hardware notions: charac-
ters for using bytes, integers for using words, pointers to use the addressing mechanisms, functions for pro-
gram abstraction, and an absence of constraining language features so that the programmer can manipulate
the inevitable messy hardware-specific details. The net effect has been that C is relatively easy to learn and
use in areas where some knowledge of the real machine is a must or simply a benefit. Moreover, C is easy
enough to implement that it has become available virtually everywhere.

The other main trend in programming languages—particularly in the academic community—has been
to try to define a machine-independent semantics for a language. The goal is to get the language away from
the messy details of computer hardware such as bytes and pointers, and allow programmers to operate in a
provably sound and logically simple universe. Sometimes, this is expressed as providing an ideal virtual
machine for the programmer. Lisp is the most prominent of these languages, but almost all high-level lan-
guage designs aim to hide the fundamentals of the underlying machine from the programmer.

The results from this idealistic school of language design have not been uniformly encouraging. The
semantic bases of such languages are cleaner and simpler than that of languages such as C. However, each
language family has a different semantic base, which means that a systems programmer in one of these lan-
guages must learn both the high-level semantic base of the programming language and the low-level one of
the machine. Consequently, even if learning the higher-level language is easier than learning C, learning C
has for many proven easier than learning the higher-level language plus the machine model. This trend has
been amplified where operating systems add their own layer of interfaces and conventions to the set of con-
cepts to be mastered. Traditionally, these interfaces and conventions are close to the machine in the way C
is. Indeed, operating systems sometimes describe their interfaces only in C terms, leaving the machine
model unspecified beyond that.

Generating code for a language with semantics that are not close to the traditional bytes-and-pointers
machine architectures has been a constant problem. It is not unusual to pay a factor of three or ten in run-
time for a higher-level semantics, especially when those semantics include the notion that the type of an
expression is not knowable until that expression is evaluated during program execution.

If C gains its advantages from a match with traditional machine architectures, perhaps it is reasonable to
try to design new machine architectures to fit higher-level languages. As a result, there has been a steady
stream of high-level machine architectures for particular families of languages. Unfortunately, this
approach has repeatedly run aground on two rocks. Each higher-level language family has a different
semantic base so that a machine optimized for one such language base becomes useless—or at least
uneconomical—for all other such languages as well as for traditional languages such as C and Fortran.
Also, as the semantic base of a higher-level language is extended to deal with the various forms of messi-
ness necessary to deal with a complete computer system (e.g. multiple users, I/O devices, security, hard-
ware diagnostics) some of that messiness leaks into the semantic base itself—thereby diluting its appeal.

Worse yet, almost everybody who pays for computers uses traditional languages and all large hardware
manufacturers have a strong financial interest in traditional architectures. Therefore, the best tools, the
largest number of hardware designers, the newest hardware technologies, the best production facilities, and
the most money is spent on bytes-and-pointers architectures. Consequently, high-level machine architec-
tures tend to be a generation or two behind the state of the art and never become cost effective.

C++ was designed to dodge the dilemma that machine-level language semantics, as in C, had a funda-
mental advantage, yet the programming model offered by languages such as C constrained the kinds of
applications that could be successfully built. The solution chosen for C++ was to augment the low-level
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language features with powerful, yet affordable abstraction mechanisms [Stroustrup,1985]:
‘‘A programming language serves two related purposes: it provides a vehicle for the programmer to
specify actions to be executed and a set of concepts for the programmer to use when thinking about
what can be done. The first aspect ideally requires a language that is ‘‘close to the machine,’’ so that all
important aspects of a machine are handled simply and efficiently in a way that is reasonably obvious to
the programmer. The C language was primarily designed with this in mind. The second aspect ideally
requires a language that is ‘‘close to the problem to be solved’’ so that the concepts of a solution can be
expressed directly and concisely. The facilities added to C to create C++ were primarily designed with
this in mind.’’

Given both machine-level facilities and abstraction mechanisms, there is a danger of opening a semantic
gap between the two sets of facilities. That is, a language might offer the programmer the choice between
writing efficient code (using machine-level facilities) or elegant code (using abstraction). This was not con-
sidered an acceptable choice to offer C++ programmers. It was essential to provide abstraction facilities
that could be used to write user-defined types with little or no overhead compared to C or even assembly
code. To be useful in this context a mechanism can’t just be elegant, it must also be affordable.

3 Efficient User-defined Types

Small heavily used abstractions are common in many applications. Examples are characters, integers, float-
ing point numbers, complex numbers, points, pointers, coordinates, transforms, (pointer,offset) pairs, dates,
times, ranges, links, associations, nodes, (value,unit) pairs, disc locations, source code locations, BCD char-
acters, currencies, lines, rectangles, scaled fixed point numbers, numbers with fractions, character strings,
vectors, and arrays. Every application uses several of these; a few use them heavily. A typical application
uses a few directly and many more indirectly from libraries.

C and other programming languages directly support a few of these abstractions. However most are
not, and cannot be, supported directly because there are too many of them. Furthermore, the designer of a
general-purpose programming language cannot foresee the detailed needs of every application. Conse-
quently, mechanisms must be provided for the user to define such small concrete types. It was an explicit
aim of C++ to support the definition and efficient use of such user-defined data types very well. They were
seen as the foundation of elegant programming. As usual, the simple and mundane is statistically far more
significant than the complicated and sophisticated.

Here is a declaration of a Date class:

class Date {
public: // public interface:

enum Month { jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec };

Date(int d, Month m, int y); // constructor

// functions for examining the Date:

int day() const;
Month month() const;
int year() const;

string string_rep() const; // return string representation
void char_rep(char s[]) const; // place C-style string represen-

// tation in C-style array s
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// functions for changing the Date:

Date& add_year(int n); // add n years
Date& add_month(int n); // add n months
Date& add_day(int n); // add n days

private:
int d, m, y; // representation

};

C++ uses { } to delimit scopes and // to start comments. ‘‘Class’’ is the C++ term for a user-defined type.
In declarations, a suffix ( ) is used to specify a function, and a suffix & means ‘‘reference to.’’ Thus,

Date& add_year(int n);

declares a function taking an integer argument and returning a reference to a Date. The type void is used
to specify that a function doesn’t return a value.

The set of operations is fairly typical for a user-defined type:
[1] A constructor specifying how objects/variables of the type are to be initialized. In this case, a Date

can be created given three integers representing the year, month, and day.
[2] A set of functions allowing a user to examine a Date. In this case, functions returning integers rep-

resenting the year, month, and day are provided, and also two functions returning a character string
representations of the Date. The char[] is a C-style array of characters, string is the C++
standard library string type. These functions are marked const to indicate that they don’t modify
the state of the object/variable they are called for.

[3] A set of functions allowing the user to manipulate Dates without actually having to know the
details of the representation or fiddle with the intricacies of the semantics.

[4] In addition to the explicitly declared operations, Dates can be freely copied.
Declared properties are checked at compile time. For example, if a function not declared in class Date tries
to use a private member, that function will cause the compiler to issue an error message. Similarly, the
const member functions do not modify the state, etc.

Here is a small—and contrived—example of how Dates can be used:

void f(Date& today)
{

Date lvb_day = Date(16,dec,today.year());

if (today.day()==29 && today.month()==feb) {
// ...

}

if (midnight()) today.add_day(1);

cout << "Today’s date:" << today << ’\n’;
}

This assumes that the output operator << has been declared for Dates, which we will do in §3.3.
Why is it worthwhile to define an abstract type for something as simple as a date? After all, we could

define a structure:

struct Date {
int day, month, year;

};

and let programmers decide what to do with that. If we did that, though, every user would either have to
manipulate the components of Dates directly or provide separate functions for doing so. In effect, the
abstraction would be scattered throughout the system, which would make it hard to understand, document,
or change. Inevitably, providing a concept as only a simple structure causes extra work for every user of
the structure.

Also, even though the Date type seems simple, it takes some thought to get right. For example, incre-
menting a Date must deal with leap years, with the fact that months are of different lengths, and so on.
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Also, if we ever need to change the representation of Date it is useful that the representation be used only
by a designated set of functions. For example, if we decided to try representing a Date as the number of
days before or after January 1 year 0 then only the functions declared in the declaration of Date would
need changing.

3.1 Defining Member Functions
Naturally, an implementation for each member function must be provided somewhere. For example, here is
the definition of Date’s constructor:

Date::Date(int dd, Month mm, int yy)
{

y = yy;
m = mm;
d = dd;

int max;

switch (mm) {
case feb:

max = 28+leapyear(yy);
break;

case apr: case jun: case sep: case nov:
max = 30;
break;

case jan: case mar: case may: case jul:
case aug: case oct: case dec:

max = 31;
break;

}

if (d<1 || max<d) throw "bad day";
}

The constructor checks that the data supplied denote a valid date. If not, say for
Date(30,Date::feb,1994), it throws an exception, which indicates in a way that cannot be ignored
that something went wrong. For more information about exception handling, see [Stroustrup,1991§9]. If
the data supplied are acceptable, the obvious initialization is done. Note that initialization is a relatively
complicated operation because it involves data validation. On the other hand, once a Date has been cre-
ated, it can be used and copied without further checking. In other words, the constructor establishes the
invariant for the class (in this case, that it denotes a valid date). Other member functions can rely on that
invariant and must maintain it. This design technique can simplify code immensely [Strous-
trup,1991§12.2.7.1] [Stroustrup,1994§13.2.4].

Most functions are trivial or almost trivial:

int Date::day() const
{

return d;
}

Date& Date::add_year(int n)
{

if (d==29 && m==feb && !leapyear(y+n)) {
d = 1;
m = mar;

}
y += n;
return *this;

}

The notation *this refers to the object for which a member function is invoked. It is equivalent to
Simula’s THIS and Smalltalk’s self. Returning a self-reference is a useful convention that allows
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chaining of operations. For example:

someday.add_day(1).add_month(1).add_year(1);

adds a day, a month, and a year to someday.
As is common for such simple concrete types, the definitions of member functions vary between trivial

and not-too-complicated. Some, such as incrementing a month, are tricky enough to make it worthwhile
designing a suitable set of interface functions rather than leaving the manipulation of the data structure
completely to users.

3.2 Helper Functions
Typically, a class has a number of functions associated with it that need not be defined in the class itself
because they don’t need direct access to the representation. For example:

int diff(Date a, Date b); // number of days in the range [a,b) or [b,a)
bool leapyear(int y);
Date next_weekday(Date d);
Date next_saturday(Date d);

Defining such functions in the class itself would complicate the class interface and increase the number of
functions that potentially needed to be examined when a change to the representation is considered.

How are such functions ‘‘associated’’ with class Date? Traditionally, their declarations were simply
placed in the same file as the declaration of class Date, and users who need Dates would make them all
available by ‘‘including’’ the file defining the interface, as

#include "Date.h"

However, this still leaves the association implicit as far as the C++ language rules are concerned, and the
names pollute the global name space. A more recent approach is to enclose the class and its helper func-
tions in a namespace:

namespace Chrono { // facilities for dealing with time

class Date {
// ...

};

int diff(Date a, Date b);
bool leapyear(int y);
Date next_weekday(Date d);
Date next_saturday(Date d);

// ...
}

Names from a namespace can be used by explicitly qualifying them with the namespace name or by intro-
ducing an alias. For example:

void f(Chrono::Date d)
{

Chrono::Date next_sunday = Chrono::next_saturday(d).add_day(1);
}

or

using Chrono::Date; // introduce alias ‘‘Date’’

void f(Date d)
{

using Chrono::next_saturday; // introduce alias ‘‘next_saturday’’

Date next_sunday = next_saturday(d).add_day(1);
}
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If detailed control of names is not required, all the names from a namespace can be made available by a sin-
gle declaration:

using namespace Chrono; // make all names from Chrono available

void f(Date d)
{

Date next_sunday = next_saturday(d).add_day(1);
}

Using the more discriminating ways of referring to names in a namespace is less likely to lead to name
clashes and surprises [Stroustrup1994§17].

3.3 Overloaded Operators
It is often useful to add functions to enable conventional notation. For example, the operator== func-
tion defines C++’s equality operator to work for Dates.

bool operator==(Date a, Date b); // equality
{

return a.day()==b.day()
&& a.month()==b.month()
&& a.year()==b.year();

}

Other obvious candidates are:

bool operator!=(Date, Date); // inequality
bool operator<(Date, Date); // less than
bool operator>(Date, Date); // greater than
// ...

Date& operator++(Date& d) // increase date by one day
Date& operator--(Date& d); // decrease date by one day

Date& operator+=(Date& d, int n); // add n days
Date& operator-=(Date& d, int n); // subtract n days

ostream& operator<<(ostream&, Date d); // output d
istream& operator>>(istream&, Date& d); // read into d

For Date, these operators can be seen as mere conveniences, but for many types—such as complex num-
bers, arrays, and function-like objects—the use of conventional operators is so firmly entrenched in
people’s minds that their definition is almost mandatory. Usually, it is wise to define only operators that
are conventional for a given type and to define them to have their conventional meaning.

When thinking about operator overloading, most people seem primarily to think of arithmetic operators
such as + and -. In our experience, assignment, =, subscripting, [], and application, () are both more
commonly useful and more fundamental to the types for which they are used.

3.4 The Significance of Concrete Classes
We call such simple user-defined types concrete types to distinguish them from abstract types as presented
below and to emphasize their similarity to built-in types such as int and char. They have also been
called ‘‘value types,’’ and their use ‘‘value-oriented programming.’’ Their model of use and the ‘‘philoso-
phy’’ behind their design are quite different from what is often advertised as ‘‘object-oriented program-
ming.’’

The intent of a concrete type is to do a single relatively small thing well and efficiently. It is not usually
the aim to provide the user with facilities to modify the behavior of a concrete type. In particular, concrete
types are not intended to display polymorphic behavior (see §5.2).

If you don’t like some detail of a concrete type, you build a new one with the desired behavior. If you
want to ‘‘re-use’’ a concrete type you use it in the implementation of your new type exactly as you would
have used an int. For example:
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class Date_and_time {
private:

Date d;
Time t;

public:
Date_and_time(Date d, Time t);
Date_and_time(int d, Date::Month m, int y, Time t);
// ...

};

The derived class mechanism described in §5.2 can be used to define new types from a concrete class by
describing the desired differences, but that implementation technique is beyond the scope of this paper; see
[Stroustrup,1994§2.9.1].

A concrete class such as Date needs no hidden overhead in time or space. The size of a concrete type
is known at compile time so that objects can be allocated on the run-time stack (that is, without free-store
operations). The layout of each object is known at compile time so that inlining of operations is trivially
achieved. Similarly, layout compatibility with other languages, such as C and Fortran, also comes without
special effort.

A good set of such types can provide a concrete foundation for applications. We feel that many pro-
gramming languages have neglected concrete types. Lack of support for ‘‘small efficient types’’ can lead
to gross run-time and space inefficiencies when overly general and expensive mechanisms are used. Alter-
natively, it can lead to obscure programs and wasted time when programmers are forced to discard expen-
sive abstraction mechanisms in favor of direct manipulation of data structures or lower-level languages.

4 Containers and Generic Programming

As one would expect from a language with a strong emphasis on facilities for designing and using simple
types, C++ doesn’t provide sophisticated data structures as built-in types. In this, C++ follows a tradition
stretching back to Algol60 of supporting nontrivial concepts, such as input/output, through libraries. Lan-
guages following this idea include C, Lisp, Beta, Eiffel, and Smalltalk.

It is not sufficient to provide only simple data structures. Doing that just forces every programmer to
reinvent the wheel. Instead, library types must be supplied with the basic operations needed to use them.
For example, C doesn’t provide a proper string type. Instead it provides a convention for using arrays of
characters and a set of functions for manipulating such strings.

A string is one of the simplest examples of a critically important kind of type, the container. A con-
tainer is an object used to hold other objects. Other examples are vectors, lists, maps (sometimes called
associative arrays and dictionaries), sets, and queues.

In addition to input/output streams and proper character strings, the C++ standard library provides these
and other containers [Koenig,1995]. It also provides the basic operations needed to use the containers.
These operations—conventionally called algorithms—include sorting, merging, facilities for iterating over
containers, facilities for applying operations of elements in containers, etc. The standard library facilities
for containers and generic algorithms are derived from Alex Stepanov’s STL library [Stepanov,1994]
[Vilot,1994]. This section explores some of the principles behind the STL and some of the techniques used
to express them.

4.1 An Elementary Data Structure
A library of fundamental data types is valuable only if the types provided by the library are about as easy to
use as built-in types. As an example, we will examine how to handle variable-length arrays first in C and
then in C++.

C’s notion of an array matches traditional machine hardware exactly: An array has a fixed size (known
at compile time), and it is trivial to obtain pointers to elements of the array. For example:
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void f1() /* C or C++ function */
{
#define n 1000

int squares[n];
int i;

for (i = 0; i < n; ++i) squares[i] = i*i;

/* use squares */
}

creates an array containing n integer values with indices 0 through n-1 and sets each element to the square
of its index. Unfortunately, the size of such an array, in this case n, must be a compile-time constant.

In C, a variable-length array is usually simulated using the library functions malloc and free that
deal in raw memory. For example:

void f2(n) int n; /* a C function */
{

int *squares = malloc(n * sizeof(int));
int i;

for (i = 0; i < n; ++i) squares[i] = i*i;

/* use squares */

free(squares);
}

To make this work, C supports a form of type punning—it is possible to take an array of one type and treat
the memory it occupies as if it really contained memory of another type. This makes it possible to assign
the result from malloc to squares. C’s definition of indexing is what makes it possible to refer to
squares[i] as if it were an element of an array. Probably the greatest inconvenience of using C this
way is the requirement to free the memory explicitly when done with it.

Now let us look at how C++ handles variable length arrays. As with built-in arrays, C++ library arrays
are one-dimensional. Multi-dimensional arrays are most commonly used for numerical computation, which
is supported by a separate numerical library. A one-dimensional array is called a vector, and is used
something like this:

void f3(int n) // C++ function
{

vector<int> squares(n);

for (int i = 0; i < n; ++i) squares[i] = i*i;

// use squares
}

This is not much more difficult than using a built-in array: As for the built-in arrays, there is no special
requirement to free the memory used by squares; that memory is automatically freed when the variable
goes out of scope†.

Making this work for an array size that is not a compile time constant and for an array that is a user-
defined type requires the ability
__________________
† Because f3() uses free store and f1() uses the stack, f3() incurs a fixed allocation overhead, which depends, among other
things, on how fast the system’s memory allocator is and how much trouble the compiler takes to optimize uses of the standard library.
In the (worst and unrealistic) case where use squares was nothing, with a compiler that uses the allocator that comes with the machine
and no special optimization, we measured the overhead to be to between a factor of 2 and a factor of 3 depending on the size of the
vector. On the other hand, when use squares was printing out the vector there were no measurable performance difference. We timed
an intermediate example, where use squares was to take the square root of each element. In this case, the overhead varied from 5% to
58% depending on the size of the vector. We leave it for the reader to decide in which situations the overhead might be significant.
There are no significant overhead in f3() compared to use of C-style variable length array in f2().
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[1] for vector<int> to be a distinct type from, say, vector<float>;
[2] for the library to define what it means to create an object of type vector<int> with a particular

parameter;
[3] to define the meaning of subscripting (for example squares[i]); it no longer suffices to use the

C array/pointer equivalence;
[4] to say what happens when a vector goes out of scope.

Indeed, much of the complexity in C++ is there primarily for use by library authors. More language mecha-
nism is needed to allow a library to define useful arrays than would be needed to include a particular defini-
tion of arrays in the language itself.

As one would expect from a data structure implemented in a library, more operations are available than
just the most elementary ones. For example, suppose we wanted our vector squares to contain only val-
ues greater than 1000. Taking advantage of our knowledge that we stored values in squares in ascending
order, we might like to find the first element greater than 1000, copy that one and all the subsequent ones to
the beginning, and then shrink the vector to the appropriate size. Here is a straightforward way to do
that:

void g1(vector<int>& squares)
{

int n = squares.size();

// find first square greater than 1000:

int k = 0;
while (k<n && squares[k]<=1000) ++k;

// move larger squares:

int j = 0;
while (k < n) squares[j++] = squares[k++];

// resize squares so that its size becomes m
}

In addition to missing the part that resizes square, this code is tedious and error-prone. What we really
want to do is two things:

[1] find the first element, if any, of squares that is greater than 1000, and
[2] erase the elements of squares before the one we found.

The library offers ways to do that directly. First we write a predicate function, which checks if its argu-
ment is greater than 1000:

bool bigger1000(int n) { return n > 1000; }

Next we use a standard library function called find to locate the first element for which bigger1000 is
true:

void g2(vector<int>& squares)
{

vector<int>::iterator vi =
find_if(squares.begin(), squares.end(), bigger1000);

// resize squares so that its size becomes m
}

This last example introduces three things we haven’t seen before:
[1] the library defines a type vector<int>::iterator that can be used to mark a location in a

vector<int>;
[2] every vector has a pair of member functions called begin and end, which return iterators that

identify the initial element and a point one past the last element of the vector; and
[3] the library function find_if locates the first element between the points identified by two iterators

that satisfies the property given by its third argument. In this case, the third argument is a pointer to
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the function bigger1000(); find_if calls through that pointer to check each element.
After calling find_if, the vector iterator vi will identify either the first element of squares that is
larger than 1000 or a point one past the end of squares. All that is left to do is erase the elements of
squares starting at the beginning and ending just before vi:

void g3(vector<int>& squares)
{

vector<int>::iterator vi =
find_if(squares.begin(), squares.end(), bigger1000);

squares.erase(squares.begin(), vi);
}

This will work even if vi points past the end. Of course, we can combine these two expressions and do
away with the local variable vi:

void g4(vector<int>& squares)
{

squares.erase(squares.begin(),
find_if(squares.begin(), squares.end(), bigger1000));

}

4.1.1 Library Support for Predicates
For many, g4() is as terse, elegant, and efficient as they could wish. However, we can do better still
because the library offers some tools for building objects that behave like predicate functions. Let us see
how we can eliminate the predicate bigger1000() and replace it with standard library features. The
point of this is to demonstrate that when the basic library facilities become familiar, it becomes unnecessary
to invent tiny functions just to implement trivial predicates.

There is a library type called greater<int> whose objects take a pair of integers and determine
whether the first is greater than the second. In other words, if we declare

greater<int> gt;

then gt(3,4) would be false and gt(4,3) would be true. These objects are not truly functions, but
they act like functions. We therefore call them function objects.

There is also a library function called bind2nd that takes a predicate and a value and yields an object
that, when called with a single argument, applies the predicate to that argument and the value. This is con-
fusing to describe, but easy to use:

(bind2nd(gt, 1000)) (999)

is false and

(bind2nd(gt, 1000)) (1001)

is true. We can therefore use bind2nd(gt, 1000) as our predicate instead of bigger1000()
when calling find_if:

void g5()
{

greater<int> gt;

squares.erase(squares.begin(),
find_if(squares.begin(), squares.end(),

bind2nd(gt, 1000)));
}

Again, we can go further still by eliminating the local variable gt. The explicit constructor call
greater<int>() will serve the same purpose by creating an anonymous object:
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void g6()
{

squares.erase(squares.begin(),
find_if(squares.begin(), squares.end(),

bind2nd(greater<int>(), 1000)));
}

We can think of the body of this function as meaning
‘‘Remove from squares all the elements up to and not including the first element that is greater
than 1000.’’

For programmers without experience with functional languages, this may appear confusing at first
glance, but that is mostly because of unfamiliarity. Once one understands what the original operations do,
we find this code easier to understand than the original ‘‘straightforward’’ version, g1(). It is also easier
to convince ourselves of its correctness.

Importantly, the notational convenience of g6() has not been bought at the cost of run-time ineffi-
ciency compared to the conventional C-style version g1()†.

4.2 Another Elementary Data Structure
People who mostly use languages that, like C, Fortran, Basic, or Pascal, support arrays more conveniently
than lists often use arrays when they really wanted lists. People who mostly use languages that, like Lisp or
ML, support lists more conveniently than arrays, are similarly biased toward lists. Our squares example,
contrived as it is, illustrates an array bias that could be expensive: deleting the initial k elements of an
n-element array will rarely be faster than deleting the initial k elements of an n-element list and may well
be much slower. Suppose we wanted to use lists instead of vectors in our squares example. How would
we do it?

Using lists in C is so messy that we will leave it to the reader as an exercise. The standard C++ library
provides lists that are about as easy to use as arrays. The main difference from the viewpoint of this exam-
ple is that lists do not offer an indexing operation. We must therefore use one of several available ways of
appending an element to a list; the most convenient in the present context looks like this:

void fill(list<int>& squares)
{

for (int i = 0; i<n; ++i) squares.insert_back(i*i);
}

Here, insert_back is a member function that appends an element to the end of a list. This makes it
possible to build up a list of n elements without having to use indexing. Indeed, class vector has a
insert_back() member function as well, so the loop above would work both for vectors and lists.

Not only that, but if we want to find the first element of squares that is greater than 1000 and remove
everything before it, the same expression as before will work here too:

void h(list<int>& squares)
{

squares.erase(squares.begin(),
find_if(squares.begin(), squares.end(),

bind2nd(greater<int>(), 1000)));
}

Interestingly, although the expression is the same, many of its components have different types when
squares is a list than they do when squares is a vector. So, for example, squares.begin()
yields a value of type list<int>::iterator when squares is a list<int>, the find_if func-
tion needs to execute completely different code (because accessing the elements of a list is different from
accessing the elements of a vector), and so on. It is common for things like this to be possible in languages
__________________
† Naturally, the performance of such functions is implementation dependent and it is not easy to say what a comparison of such simple
examples really means. However, it might be relevant to mention that we measured g1() (C-style) to be on average 5% slower than
g4() (STL Using bigger1000) and on average 15% slower that g6() (pure STL library). Inlining is the reason that g6 is faster
that g4().
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like Lisp or Smalltalk, where types are not determined until execution time, but it is unusual in languages
that support strong static typing. What in C++ makes this possible?

4.3 Function Templates and Compile-time Polymorphism
Object-oriented programming is built on top of run-time polymorphism: the ability to choose, during pro-
gram execution, among functions with similar signatures defined as members of a collection of related
types. We will look at that style of programming in more detail in §5. In addition, C++ has function tem-
plates, which offer a kind of compile-time polymorphism: every template offers a choice, made during
compilation, among operations on types that may be completely unrelated.

Function templates are similar to the generic operations provided in languages like CLU, Modula-3, and
Ada. However, they they are unusually flexible in the sense that they work both with built-in and user-
defined types and do not require explicit declaration of the types with which they will eventually be used.

Here is a simple example:

template<class T> T abs(T x)
{

if (x < 0) return -x;
return x;

}

The word class above simply means ‘‘type:’’ T can represent any type, not just a user-defined type. So,
for example, abs(-3) is 3 (and has type int), abs(-42.1) is 42.1 (and has type double), and so
on.

This template defines abs for any type T that supports copying, unary -, and binary <. That implies,
among other things, that it does not work for complex numbers because they do not define <. The result of
abs(z) where z is a complex is a compile time error. For reasons like this, it is possible to define tem-
plate specializations, which work for specific types:

double abs(complex z)
{

return sqrt(pow(re(z),2)+pow(im(z),2));
}

This specialization will be called if abs is applied to a complex argument and the template will be used
for other argument types.

With even this little bit of knowledge, it is possible to begin to see how things like find_if can be
made to work. Consider, for example the following implementation:

template<class I, class P> I find_if(I begin, I end, P pred)
{

while (begin!=end && !pred(*begin)) ++begin;
return begin;

}

This template function says little about the specific types I (for iterator) and P (for predicate); in conse-
quence, the function can be used on quite a variety of types.

For example, consider a built-in array:

void k()
{

int a[100];

int* p = find_if(&a[0], &a[100], bigger1000);
}

Here, bigger1000 is our function from §4.1 that tests if its argument is greater than 1000. The types I
and P are ‘‘pointer to int’’ and ‘‘pointer to function taking int and returning bool,’’ respectively, so in
this particular context we could have written find_if this way:
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int* find_if(int* begin, int* end, bool (*pred)(int))
{

while (begin!=end && !pred(*begin)) ++begin;
return begin;

}

This is just a C program; it does a linear search of the elements of an array in the obvious way.
Now let us look at how we used find_if in h() where it was used on squares and squares was

a list<int>:

find_if(squares.begin(), squares.end(), bind2nd(greater<int>(), 1000))

Here type I is the type of squares.begin(). We don’t actually know what that type is, but its name is
list<int>::iterator. All we know beyond its name is that it denotes an element of type int
somehow. We could think of an iterator as a simple pointer to int, though for a list a simple int* is
an unlikely candidate for an iterator type.

Our use of find_if is therefore equivalent to what we would have if we wrote it this way:

typedef typename list<int>::iterator I;

I find_if(I begin, I end, bool(*pred)(int))
{

while (begin!=end && !pred(*begin)) ++begin;
return begin;

}

We still don’t know what this does. We have, however, reduced the problem of understanding it to a previ-
ously unsolved problem, namely understanding how list<int>::iterator works. Moreover, if we
know that we want this function to do a linear search, we can infer from that the behavior that
list<int>::iterator must have.

Most fundamental are the facts that begin is a list<int>::iterator and we pass begin as an
argument and return it as a result. That means it must support copying. Moreover, comparing begin with
end requires that list<int>::iterator must support comparison and, presumably, that the compari-
son must yield some sensible result. Finally, because we use *begin and ++begin, those operations too
must do the right things, whatever those are. If we make the list<int>::iterator type do all those
things, find_if will work.

4.3.1 Iterator Categories
The standard C++ library defines what ‘‘all those things’’ are. More specifically, it defines five iterator cat-
egories and says what it takes for a type to be a member of each of them. It then says, for the library func-
tions that accept iterators, what category of iterator each one is expected to be.

The simplest kind of iterator is called an input iterator; it does just enough to allow a sequential data
structure to be read but not written. Thus, if p is an object of an input iterator type, *p and ++p do sensible
things, but --p might not. You can find the formal definition in the draft ANSI/ISO C++ standard
[Koenig,1995] or in [Stepanov,1994].

There are also output iterators, which allow a sequential data structure to be written but not read. The
difference between an input and an output iterator is that if p is an output iterator, *p may only be written
but not read.

If a single object can serve both as an input and an output iterator, we call it a forward iterator. A for-
ward iterator that also supports the decrement operator, --, is called a bidirectional iterator. Finally, a bidi-
rectional iterator that also supports subscripting and other operations analogous to pointer arithmetic is
called a random access iterator. This can be represented graphically:
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Iterator categories:

Input

Output

Forward Bidirectional RandomAccess

their operations:

++ * = == != -- []

This iterator nomenclature is not part of the C++ language. Instead, it is part of the standard library docu-
mentation. Thus, for example, the description of find_if states that the first two arguments must be
input iterators that delimit a range of values.

C++ templates do not require the author of functions like find_if to declare explicitly that its argu-
ments should be input iterators. In fact, there is no explicit way to declare such things even if the author
wanted to. We have heard numerous suggestions that C++ should make it possible to write find_if in a
style similar to the following:

template<class I: input_iterator, class P: predicate>
I find_if(I begin, I end, P pred)
{

// ...
}

Why does C++ offer no such facility? There are three main reasons:
[1] Any such facility would have to take into account not only inheritance but also built-in types and

operations on types not defined as members (such as the ‘‘helper functions’’ in §3.2 and §3.3).
Ordinary pointers meet the requirements for random-access iterators when they are used to point to
elements of (built-in) arrays. That means we would need some way of saying that for any type T,
T* is a random-access iterator. Otherwise, we would have to forego the ability to use functions like
find_if on built-in arrays.

[2] The facility would offer little additional safety, if any. The main benefit would be that errors would
be detected when a template function, such as find_if, is called instead of when code is generated
for it; we believe that this benefit alone is not enough to justify a whole new type-checking facility.

[3] Even if such a facility existed and checked usage completely at the earliest possible instant, that
would still not guarantee safety. To work correctly, a template requires that its parameter type pro-
vide the expected operations with the expected semantics. Specifying ‘‘the expected operations’’
can be messy and constraining. Specifying ‘‘the expected semantics’’ can be surprisingly difficult.
For example, most attempts to specify something as simple as a less than operator, <, in general can
involve the programmer in the intricacies of the IEEE floating-point value NaN (not a number). We
prefer to leave such complexity in the documentation.

In general, we know of no way of expressing constraints on template parameters that wouldn’t be either too
cumbersome or too constraining [Stroustrup,1994,§15.4]. Instead, C++ provides mechanisms for providing
separate implementations, called specializations, for special cases. For example, in addition to providing a
general list template, one can provide versions to be used for lists of pointers (in general), and for lists of
void* (in particular).

4.4 Strategy, Style, and Interface Conversion
Users rely on library code. Conversely, libraries often have to rely on user code for critical operations done
to user data. Examples are copy operations for objects passed to a container, compare functions passed to a
sort routine, and a user-defined class overriding a virtual draw function in a graphics class.

Over the years, it has become obvious that techniques making such dependencies rely less on specific
names and interface styles significantly increases the flexibility and usefulness of libraries. The template
mechanism has played a key role in such tayloring of interfaces.
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4.4.1 Minimizing Run-time Resolution
Flexibility is often achieved by postponing decisions until run time. Sometimes, that is just right, but at
other times the convenience is bought at a cost in speed and safety. Consider the well known C (and C++)
standard library function printf():

#include <stdio.h>

main()
{

printf("%s", "Hello world\n");
}

Here, printf() determines the type of its second argument at run time. In general, it has to, because its
first argument, the format string, might be a variable. In most cases, static type checking of printf() is
possible. However, from an implementer’s viewpoint, it is easier to put this kind of run-time type checking
into the printf library function than into the compiler.

The C++ equivalent,

#include <iostream.h>

main()
{

cout << "Hello world\n";
}

does not rely on run-time typing. Instead, the types of cout and of the the string literal are used to select
during compilation the appropriate version of the << operator to use. This means that there is no run-time
overhead involved in finding the right kind of output conversion to use and no possibility that the wrong
choice will cause a crash.

The cooperation between the user and the library is established through the convention that the << oper-
ator is used for output. If a library or a user needs to support output of a new type, a new << is provided.

4.4.2 Templates for Interface Conversion
Sometimes conventions clash. For example, there may be one well-established convention for I/O and
another for container interfaces. Consequently, it can be useful for library routines not to rely directly on
the interfaces of the objects they use. Instead they rely on auxiliary objects that express the mapping
between the expectation of library code and the user code interfaces. For example, the algorithms in the
STL library doesn’t use containers directly. Instead they access their input and output through iterators.

This strategy makes it possible to write iterator classes whose sole purpose is to impose a particular
interface on objects of some class that already exists. For example, many popular algorithms read their
input one element at a time from a source. It makes perfect sense to let those algorithms get their input
from an input stream. In fact, anything else requires clumsy workarounds. Consequently, the standard C++
library offers a template class called istream_iterator. Each object of that class obeys the rules for
input iterators, but such objects do not iterate over a data structure in the ordinary sense. Instead, an
istream_iterator yields, in turn, each of the data values in a particular input stream, read according
to the usual rules for the >> operator.

For example, suppose we say

input_iterator<string> ins(cin);

Then ins is an object that on request will read strings from cin, so that if s is a string,

s = *ins++;

has the same effect as

cin >> s;

The STL model requires that we iterate from somewhere to somewhere. Consequently, we need a value
indicating ‘‘end of file’’ that we can compare the iterator ins to. Such a value is used by default for an
uninitialized input_iterator<string>, so that we can say something like this:



- 17 -

input_iterator<string> ins(cin);
input_iterator<string> eof;

void f1()
{

while (ins != eof) {
s = *ins++;
// ...

}
}

and the loop will be executed once for each string in the standard input file.
This is equivalent to:

void f2()
{

while (cin >> s) {
// ...

}
}

However, defining input_iterator makes it possible for the algorithm library to use the input/output
stream library unmodified. For example we can read all the strings in the standard input into a
vector<string> without writing an explicit loop. Instead, we can create the vector directly from the
standard input:

vector<string> vs(ins, eof);

Here, vs is constructed with two arguments, both iterators; doing that causes vs to be initialized with a
copy of the elements in the range delimited by those iterators. In this case, that range is the entire contents
of the standard input file.

Along similar lines, we can create an output iterator attached to the standard output file:

ostream_iterator<string> outs(cout, "\n");

Here, the second argument to the ostream_iterator constructor is a string that will be written after
each use of the ostream_iterator. Thus, for example

*outs++ = "Hello world";

will print Hello world followed by a newline character.
With these iterators, we can read all the strings in the standard input and print them on the standard out-

put this way:

void g1()
{

vector<string> vs(ins, eof);
copy(vs.start(), vs.end(), outs);

}

We can even write

void g2()
{

copy(ins, eof, outs);
}

which would write each string as soon as it read it.
However, reading the entire input before producing output makes it possible to do interesting things

before printing, such as sorting the elements. For example, this complete program (except for including
header files) sorts standard input onto its standard output:
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int main()
{

istream_iterator<string> ins(cin), eof;
ostream_iterator<string> outs(cout, "\n");

vector<string> vs(ins, eof);
sort(vs.begin(), vs.end());
copy(vs.begin(), vs.end(), outs);

return cout && cin; // use state of streams as result
}

Of course, C++ provides a form of run-time polymorphism as well, which is the subject of the next section.

5 Design of Class Hierarchies

From Simula, C++ borrowed the concept of a class as a user-defined type and the concept of class hierar-
chies. In addition, C++ borrowed the idea for system design that classes should be used to model concepts
in the programmer’s and the application’s world. This is often called object-oriented design and is the key
to effective use of classes. Language constructs directly support these design notions; the application of
design concepts is what distinguishes effective use of C++ from simpler uses of the language constructs as
notational props for more traditional types of programming.

A concept doesn’t exist in isolation. For example, try to explain what a car is. Soon you’ll have intro-
duced the notions of wheels, engines, drivers, pedestrians, trucks, ambulances, roads, oil, speeding tickets,
motels, etc. Consequently, when we try to map concepts into classes, we soon find the need to express rela-
tionships between classes. However, we can’t express arbitrary relationships directly, and even if we could
we wouldn’t want to. Our classes should be more narrowly defined than our everyday concepts, and more
precise. Languages that borrow from Simula are particularly adept at expressing hierarchical relationships
between classes.

5.1 Class Hierarchies
Consider a simple design problem: Provide a way for a program to get an integer value from a graphical
user interface. This can be done in a bewildering number of ways. To insulate our program from this vari-
ety, and also to get a chance to explore the possible design choices, let us start by defining our program’s
model of this simple input operation. We will leave the details of implementing it using a real user-
interface system for later.

The idea is to have a class ival_box that knows what range of input values it will accept. A program
can ask an ival_box for its value, and ask it to prompt the user if necessary. In addition, a program can
ask an ival_box if a user has changed the value since the last operation initiated by the program.

Because there are many ways of implementing this basic idea, we must assume that there will be many
different kinds of ival_boxes, such as sliders, plain boxes where a user can type a number, dials, voice
interaction, and so on.

5.2 A Traditional Class Hierarchy
Our first solution will be a traditional class hierarchy as commonly found in Simula or Smalltalk programs.

Class ival_box defines the basic interface to all ival_boxes and specifies a default implementation
that more specific kinds of ival_boxes can override with their own versions. In addition, we declare the
data needed to implement the basic notion.
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class ival_box {
protected:

int val;
int low, high;
bool changed;

public:
ival_box(int ll, int hh)

{ changed = false; low=ll; high=hh; val = ll; }
virtual int get_value()

{ changed = false; return val; }
virtual void set_value(int i)

{ changed = false; val = i; }
virtual void prompt()

{ }
virtual bool was_changed() const

{ return changed; }
};

The default implementation of the functions is pretty sloppy and provided here primarily to illustrate the
intended semantics. A realistic class would, for example, provide some range checking.

Given this basic definition of ival_box, we can derive variants of the concept from it. For example:

class ival_slider : public ival_box {
// graphics stuff to define what the slider looks like, etc.

public:
ival_slider(int, int);

int get_value();
void prompt();
bool was_changed();

};

A class like ival_slider is said to be derived from class ival_box and ival_box is said to be a
base of ival_slider. Alternatively, we can call ival_box the superclass of ival_slider and
ival_slider a subclass of ival_box. The notation

class ival_slider : public ival_box { /* ... */ };

defines ival_slider to be a subtype of ival_box. In other words, we can manipulate an
ival_slider as we would an ival_box; they share the interface defined by ival_box.

Further, a virtual function in a base class, say ival_box::prompt(), can be overridden by
defining a function with the same name and the same argument types in a derived class, say
ival_slider::prompt(). That done, a call of prompt() on an object of the derived class will
invoke ‘‘the right’’ function, even if the variable used to refer to the ival_slider is a plain pointer to
ival_box. For example:

void f()
{

ival_box* p = new ival_slider(10,700);
p->prompt();

}

Here, the initialization of p is legal because ival_slider is a subtype of ival_box, and the call of
prompt() will invoke ival_slider::prompt() because prompt() is a virtual function overrid-
den in ival_slider.

Getting ‘‘the right’’ behavior from ival_box’s functions independently of the exact kind of
ival_box actually used is called polymorphism. A type with virtual functions is called a polymorphic
type. To get polymorphic behavior in C++, objects must be manipulated through pointers or references.
The reason for this is that when manipulating an object directly, its type is always known during compila-
tion so that run-time polymorphism is not needed.

The new operator creates an object of a given type on the free store, initializes it by an invocation of the
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appropriate constructor, and returns a pointer to the resulting object .
A derived class constructor need not take the same set of arguments as its base class. Typically a

derived class has its own distinct requirements for arguments relating to its particular variant of the idea
represented by the base class. However, to simplify the discussion here, we will define all of our construc-
tors to take two ints bounding the desired range.

The data members of ival_box were declared protected to allow access from derived classes.
Thus, ival_slider::get_value() can deposit a value in ival_box::val. A protected
member is accessible from a class’ own members and members of derived classes, but not to general users.

In addition to ival_slider, we would define other variants of the ival_box concept such as
ival_dial where you select a value by turning a knob, flashing_ival_slider that flashes when
you ask it to prompt(), and popup_ival_slider that responds to prompt() by appearing in some
prominent place where it is hard for the user to ignore.

A programmer might use these ‘‘ival classes’’ like this:

void interact(ival_box* pb)
{

pb->prompt(); // alert user
// ...
int i = pb->get_value();
if (pb->was_changed()) {

// new value; do something
}
else {

// old value was fine; do something else
}
// ...

}

void some_fct()
{

ival_box* p1 = new ival_slider(0,5);
// ...
interact(p1);
ival_box* p2 = new ival_dial(1,12);
// ...
interact(p2);

}

Note that most application code is written in terms of (pointers to) plain ival_boxes the way
interact() is. That way, the application doesn’t have to know about the potentially large number of
variants of the ival_box concept. The knowledge of such specialized classes is isolated in the relatively
few functions that create such objects. This isolates users from changes in the implementations of the
derived classes and most code can be oblivious to the fact that there are different kinds of ival_boxes.

Where would we get the graphics stuff from? Most user-interface systems provide a class defining the
basic properties of being an entity on the screen, so if we use the system from ‘‘Big Bucks Inc.’’ we would
have to make each of our ival_slider, ival_dial, etc., classes a kind of BBwindow class. This
would most simply be achieved by rewriting our ival_box so that it derives from BBwindow. That
way, all our classes inherit all the properties of a BBwindow. For example, every ival_box can be
placed on the screen, obey the graphical style rules, be resized, be dragged around, etc., according to the
standard set by the BBwindow system. Our class hierarchy would look like this:

class ival_box : public BBwindow { /* ... */ }; // rewritten

class ival_slider : public ival_box { /* ... */ };

class ival_dial : public ival_box { /* ... */ };

class flashing_ival_slider : public ival_slider { /* ... */ };
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class popup_ival_slider : public ival_slider { /* ... */ };

or graphically using obvious abbreviations:

BBwindow

ibox

islider idial

iflash ipopup

5.2.1 Critique
This design works well in many ways, and for many problems this kind of hierarchy is a good solution.
However, there are some awkward details that could lead us to look for alternative designs.

We retrofitted BBwindow as the base of ival_box. This is not quite right. The use of BBwindow
wasn’t part of our basic notion of an ival_box; it was an implementation detail. Deriving ival_box
from BBwindow elevated an implementation detail to a first-level design decision. That can be right, say
when working in the environment defined by ‘‘Big Bucks Inc.’’ is a key decision of how our organization
conducts its business. However, what if we also wanted to have implementations of our ival_boxes for
systems from ‘‘Imperial Bananas,’’ ‘‘Liberated Software,’’ and ‘‘Compiler Wizzes?’’ This would require
us to write and maintain four distinct versions of our program:

// BB version:

class ivalue_box : public BBwindow { /* ... */ };

// CW version:

class ivalue_box : public CWwindow { /* ... */ };

// IB version:

class ivalue_box : public IBwindow { /* ... */ };

// LS version:

class ivalue_box : public LSwindow { /* ... */ };

This could become a version-control nightmare.
Another problem is that every derived class shares the basic data declared in ival_box. That data is,

of course, an implementation detail that crept into our ival_box interface also. From a practical point of
view, it is also the wrong data in many cases. For example, an ival_slider doesn’t need the value
stored specifically. It can easily be calculated from the position of the slider when someone executes
get_value(). In general, keeping two related, but different, sets of data is asking for trouble. Sooner or
later someone will get them out of sync. Also, experience shows that novice programmers tend to mess
with protected data in ways that are unnecessary and cause maintenance problems. Data are better kept pri-
vate so that writers of derived classes cannot mess with them. Better still, data should be in the derived
classes where they can be defined to match requirements exactly and cannot complicate the life of unrelated
derived classes. In almost all cases, a protected interface should contain functions, types and constants
only.

Deriving from BBwindow gave the benefit of making the facilities provided by BBwindow available
to users of ival_box. Unfortunately, it also means that changes to class BBwindow may force users to
recompile or even rewrite their code to recover from such changes. In particular, the way most C++ imple-
mentations work implies that a change in the size of a base class requires a recompilation of all derived
classes.
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Finally, our program may have to run in a mixed environment where windows of different user-
interface systems coexist. This could happen either because two systems somehow share a screen, or
because our program needs to communicate with users on different systems. Having our user-interface sys-
tems ‘‘wired in’’ as the one and only base of our one and only ival_box interface just isn’t flexible
enough to handle that.

5.3 Abstract Classes
So, let’s start again and build a new class hierarchy that solves the problems presented in the critique of the
traditional hierarchy. That is:

[1] The user-interface system should be an implementation detail that is hidden from users who don’t
want to know about it.

[2] The ival_box class should contain no data.
[3] No re-compilation of code using the ival_box family of classes should be required after a change

of the user-interface system.
[4] ival_boxes for different interface systems should be able to coexist in our program.

Several alternative approaches can achieve this. We will present one that maps cleanly into the C++ lan-
guage.

First we specify class ival_box as a pure interface:

class ival_box {
public:

virtual int get_value() = 0;
virtual void set_value(int i) = 0;
virtual void prompt() = 0;
virtual bool was_changed() const = 0;
virtual ~ival_box() { }

};

This is much cleaner that the original declaration of ival_box. The data is gone, and so are the simplistic
implementations of the member functions. Gone too is the constructor, because there is no data for it to ini-
tialize.

Instead, two things have been added. We will describe the role of the function called ~ival_box(),
the destructor, below. The curious =0 syntax says that a function is a pure virtual function. A class with
one or more pure virtual functions is called an abstract class. Because objects of abstract classes cannot be
created, pure virtual functions need not be defined. Only objects of non-abstract derived classes can be cre-
ated; those classes must define all the pure virtual functions they inherit. For example, if we assume that
ival_slider is derived from ival_box and defines all the pure virtuals:

void f()
{

ival_box b1; // error: abstract class
ival_box* p1 = new ival_box; // error: abstract class
ival_slider b2; // ok
ival_box* p2 = new ival_slider; // ok

}

The definition of ival_slider might look like this:

class ival_slider : public ival_box, protected BBwindow {
// data needed for slider

protected:
// functions overriding BBwindow virtual functions
// e.g. BBwindow::draw(), BBwindow::mouse1hit()
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public:
ival_slider(int,int);
~ival_slider();

int get_value();
void set_value(int i);
void prompt();
bool was_changed() const;

};

Interestingly, this declaration allows application code to be written exactly as in the interact() and
some_fct() example above. All we have done is to restructure the implementation details in a more
logical way.

The virtual function ival_box::~ival_box() and its overriding function
ival_slider::~ival_slider() are destructors, that is, functions that are implicitly called when an
object is destroyed (goes out of scope, is explicitly deleted, etc.). Many classes require some form of
cleanup for an object before it goes away. Since the abstract class ival_box cannot know if a derived
class requires such cleanup, it must assume that it does. Defining a virtual destructor in the base ensures
proper cleanup. For example:

void f(ival_box* p)
{

// ...
delete p;

}

The delete operator explicitly destroys the object pointed to by p. We have no way of knowing exactly
which class the object pointed to by p belongs to, but thanks to ival_box’s virtual destructor, proper
cleanup as (optionally) defined by that class’ destructor will be called.

The ival_box hierarchy can now be defined like this:

class ival_box { /* ... */ };

class ival_slider : public ival_box, protected BBwindow { /* ... */ };

class ival_dial : public ival_box, protected BBwindow { /* ... */ };

class flashing_ival_slider : public ival_slider { /* ... */ };

class popup_ival_slider : public ival_slider { /* ... */ };

or graphically using obvious abbreviations:

BBwindow BBwindow ibox

islider idial

iflash ipopup

Each derived class inherits an abstract class (for example, ival_box) requiring it to implement the base
class’ pure virtual functions, and a BBwindow provides them with the means of doing so. Since
ival_box provides the interface for the derived class, it is publicly derived using :public. Since
BBwindow is only an implementation aid, it is derived using :protected. This implies that a program-
mer using, say ival_slider, cannot directly use facilities defined by BBwindow; only the interface
inherited by ival_box and possibly augmented by ival_slider is available.

Deriving directly from more than one class is usually called multiple inheritance. Note that
ival_slider must override functions from both ival_box and BBwindow so it must be defined by
deriving it directly or indirectly from both. As shown in §4.2, deriving ival_slider indirectly from
BBwindow by making BBwindow a base of ival_box is possible, but has undesirable side effects.
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This design is cleaner and more easily maintainable than the traditional one—and no less efficient. It
still fails to solve the version control problem, though:

// common:

class ival_box { /* ... */ };

// BB version:

class ival_slider : public ival_box, protected BBwindow
{ /* ... */ };

// CW version:

class ival_slider : public ival_box, protected CWwindow
{ /* ... */ };

// ...

In addition, there is no way of having an ival_slider for BBwindows coexist with an ival_slider
for CWwindows even if the two user-interface systems can themselves coexist.

The obvious solution is to define several different ival_slider classes with separate names:

class ival_box { /* ... */ };

class BB_ival_slider : public ival_box, protected BBwindow { /* ... */ };

class CW_ival_slider : public ival_box, protected CWwindow { /* ... */ };

// ...

or graphically:

ibox BBwindow CWwindow

BBislider CWislider

To further insulate our application-oriented ival_box classes from implementation details, we can go one
step further and first derive an abstract ival_slider class from ival_box and then derive the system
specific ival_sliders from that:

class ival_box { /* ... */ };

class ival_slider : public ival_box { /* ... */ };

class BB_ival_slider : public ival_slider, protected BBwindow { /* ... */ };

class CW_ival_slider : public ival_slider, protected CWwindow { /* ... */ };

// ...

or graphically:

ibox

BBwindow CWwindow islider

BBislider CWislider

Usually, we can do better yet by utilizing more specific classes in the implementation hierarchy. For exam-
ple, if the Big Bucks Inc. system has a slider class, we can derive our ival_slider directly from the
BBslider:
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class BB_ival_slider : public ival_slider, protected BBslider { /* ... */ };

class CW_ival_slider : public ival_slider, protected CWslider { /* ... */ };

or graphically:

ibox

BBslider CWslider islider

BBislider CWislider

This improvement becomes significant where—as is not uncommon—our abstractions are not too different
from the ones provided by the system used for implementation. In that case, programming reduces to map-
ping between similar concepts. Derivation from general base classes, such as BB_window, is then done
only rarely.

The complete hierarchy will consist of our original application-oriented conceptual hierarchy of inter-
faces expressed as derived classes:

class ival_box { /* ... */ };

class ival_slider : public ival_box { /* ... */ };

class ival_dial : public ival_box { /* ... */ };

class flashing_ival_slider : public ival_slider { /* ... */ };

class popup_ival_slider : public ival_slider { /* ... */ };

followed by the implementations of this hierarchy for various windows systems expressed as derived
classes:

// BB implementations:

class BB_ival_slider
: public ival_slider, protected BBslider { /* ... */ };

class BB_ival_dial : public ival_box, protected BBdial { /* ... */ };

class BB_flashing_ival_slider
: public ival_slider,

private BBwindow_with_bells_and_whistles { /* ... */ };

class BB_popup_ival_slider
: public ival_slider, protected BBslider { /* ... */ };

// CW implementations:

class CW_ival_slider
: public ival_slider, protected CWslider { /* ... */ };

class CW_ival_dial : public ival_dial, protected CWknob { /* ... */ };

// ...

// ...

or graphically:
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ibox

islider idial

iflash ipopup

CWsl CWsl CWsl

CWislider BBislider

BBdial CWknob

BBidial CWidial CWipop CWifl BBipop BBifl

BBslider BBslider BBb&w

Note how the original ibox class hierarchy appears unchanged, but is surrounded by implementation
classes.

5.3.1 Critique
The abstract class design is flexible, and almost as simple to deal with as the equivalent design relying on a
common base defining the user-interface system. In the latter design, the windows class is the root of a
tree. In the former, the original application class hierarchy appears unchanged as the root of classes that
supply its implementations. In either case, you can look at the ival_box family of classes without both-
ering with the window-related implementation details most of the time.

In either case, the complete implementation of each ival_box class must be rewritten when the public
interface of the user-interface system changes. However, in the abstract class design almost all user code is
protected against changes to the implementation hierarchy and require no recompilation.

5.4 Localizing Object Creation
The flexibility of the abstract class design causes one problem, though. Most of an application can be writ-
ten using the ival_box interface. Further, should the derived interfaces evolve to provide more facilities
than plain ival_box, then most of an application can be written using the ival_box, ival_slider,
etc., interfaces. However, the creation of objects must be done using implementation-specific names such
as CW_ival_dial and BB_flashing_ival_slider. We would like to minimize the number of
places such specific names occur, and object creation is hard to localize unless you do it systematically.

As usual, the solution is to introduce an indirection. This can be done in many ways, but here is a sim-
ple one:

class ival_box_maker {
public:

virtual ival_slider* ival_slider(int, int) =0;
virtual ival_dial* ival_dial(int, int) =0;
virtual popup_ival_slider* popup_ival_slider(int, int) =0;
// ...

};

For each interface from the ival_box family of classes a user should know about, class
ival_box_maker provides a function making an object. We now represent each user-interface system
by a class derived from ival_box_maker:
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class BB_maker : public ival_box_maker {
public:

ival_slider* ival_slider(int, int);
ival_dial* ival_dial(int, int);
popup_ival_slider* popup_ival_slider(int, int);
// ...

};

class LS_maker : public ival_box_maker {
public:

ival_slider* ival_slider(int, int);
ival_dial* ival_dial(int, int);
popup_ival_slider* popup_ival_slider(int, int);
// ...

};

Each function simply creates an object of the desired interface and implementation type. For example:

ival_slider* BB_maker::ival_slider(int a, int b)
{

return new BB_ival_slider(a,b);
}

Given a pointer to a ival_maker, a user can now create objects without having to know exactly which
user-interface system is used. For example:

void f(ival_maker* pim)
{

// ...
ival_box = pim->ival_slider(-99,99);

// instead of new BB_val_slider(-99,99);
// or new LS_val_slider(-99,99);
// or ...

// ...
}

BB_ival_maker BBim;
LS_ival_maker LSim;

void g()
{

f(&BBim); // let f use BB
f(&LSim); // let f use LS

}

This technique appears in [Gamma,1994] as the abstract factory pattern.

6 C++ Style

C++ is often inaccurately described as an object-oriented language, and (therefore?) often criticized for not
fulfilling everybody’s fantasies of what an object-oriented language ought to be.

If we have to stick a pretentious-sounding label on C++ it must be: C++ is a multi-paradigm language.
It supports several styles of programming and combinations of those styles. The traditional summary is
[Stroustrup,1994]:

_ ____________________________________________
C++ is a general-purpose programming language that

– is a better C
– supports data abstraction
– supports object-oriented programming_ ____________________________________________ ⎜

⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜

However, the exact scope of this isn’t easy to pin down to a simple slogan such as ‘‘Everything is an
Object!’’ or ‘‘No side effects!’’ Such slogans are certainly not among the ideals of C++ even though
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support for both object-oriented programming and functional styles of programming is.
Good C++ style is pragmatic, has evolved from the Simula ideas of object-oriented design as modelling,

places a premium on direct expression of ideas, shares much of C’s concern for low-level efficiency, and is
aimed at solving current everyday problems.

Naturally, this is just our view. Nothing is universally held in a community as large as the C++ user
community, but our view is directly reflected in the design of C++ [Stroustrup,1994,§4]. Fortunately for
people who hold other views, one of our strongest held opinions is exactly that C++ should support a vari-
ety of styles. Thus, even though we don’t try to provide direct support for every style of programming in
C++, we don’t go out of our way to prevent styles we don’t like, either. Indeed, it is often a source of
enjoyment to see people using C++ in ways we did not anticipate—especially when it is successful.

Unfortunately—or maybe fortunately—style is hard to define and must be taught (and learned!) with
liberal use of examples. We have presented three areas where C++ provides direct support, where a definite
view of design can guide the programmer, and where the design views and resulting coding style reflects
experience with C++. The examples were chosen to demonstrate areas that are not universally well-covered
by modern programming languages and where current practice—in C++ and other languages—often
diverges from our ideal. Thus the examples from §3, §4, and §5 can serve as discriminating cases and pos-
sibly as inspiration to do as well or better.

Clearly, by ‘‘style’’ we just don’t mean rules for indentation of code, the naming of variables, and the
banning of unfashionable language features. Good programs are the result of a focus on concepts and
sound notions of design, rather than mechanistic language-technical issues. Such issues matter, but at a
much more detailed level.

C++ supports enough data abstraction to make it possible to program at as high a level as in many more
‘‘advanced’’ languages. Doing so usually requires extensive work designing, implementing and tuning a
library supporting the style. Building such a framework should not be everyday work for most C++ pro-
grammers. For example, the STL wasn’t easy to design (Alex Stepanov and his colleagues worked on the
basic ideas for over a decade), was somewhat easier to implement (the current version was about two years
of work for two people), and it is quite simple to teach and use.

This is a key idea: first a relatively small group of people develops a library supporting an application
domain well. After that, many more people can use the library to develop applications or the next level of
library. We are not making a value judgement about programmers here. It easier to use a well-designed
library than it is to design and implement it, and the subset of C++ needed to produce a complete, efficient,
and elegant library is far larger than what is needed to use it. This has led some people to propose a class
system of programmers with the best programmers focused on library development and the worst restricted
to application development.

However, the demands on a programmer’s skills are a function of both the inherent difficulty of the
application and the quality of tools available for its development. Therefore, one cannot blindly assume
that lesser skills or fewer language features are needed for application development. Sometimes, things
seem the other way around with the library developers benefitting from a relatively limited and well-
defined problem domain, and the application developers suffering from being lost in an overly large and
complicated design space. From this observation comes the notion that the best way to make progress on a
large system is to focus on the development of several libraries or frameworks and then build the system
incrementally from those.

The unit of design is not the individual class—in C++ or in any other language. It is a set of classes
related by some logical criteria [Stroustrup,1991§12.11.3.3]. For example, the power of the STL comes
from the unifying criteria for what constitutes a container, an iterator, etc. Similarly, the discussion of
design issues relating to the input operation in §5 would have been impossible had we tried to consider the
problem one isolated class at a time.

Another key observation is that not every class is supposed to be used in the same way or obey the same
simple-minded design criteria. Often, simplified design rules of thumb are advertised as universal princi-
ples and a curious form of reductionism takes the place of calm thinking. Thus, we find people arguing that
because some classes are best designed as part of a hierarchy, every class must be designed to be part of a
class hierarchy; that because it makes sense for some functions to be virtual, every function must be
virtual; and that because some interfaces are best described as abstract classes, no class presented to a
users may contain data.



- 29 -

This kind of purely language-driven thinking makes no sense to us. We must focus on the concepts in
the application and map them into the language constructs in the most appropriate way. In other words, we
must design first and keep our programming-language-technical concerns secondary. On the other hand,
we don’t consider totally language-independent design practical. The design must map into the language
used for its implementation in a way that suits the fundamental structure of the language. In particular, a
design for a C++ program that tries to subvert C++’s static type system will be ugly, unpleasant to imple-
ment, and hard to maintain. Against the fundamental structure of a language—any language—one can win
Pyrrhic victories only.

One implication of this is that major interfaces are usually best defined in terms of specific user-defined
types and that a class should provide an interface that match a single coherent concept. This allows better
type checking, and wherever possible static (compile time) checking should be used to minimize confusion,
run-time errors, and the need for run-time checking of arguments passed across an interface. The Date
constructor can be used to illustrate some tradeoffs:

Date::Date(int d, Month m, int y);

Month is a user-defined type (an enumeration), so we can’t get much confusion from that. People reading
the declaration know what is expected; should they nevertheless mess up, the compiler catches the problem:

Date d1(1978,2,21); // error: 2 is not a Month
Date d2(1978,Date::feb,21); // ok

However, we reversed the year and the day. The Date constructor’s check of the range of dates in Febru-
ary will catch that at run-time.

Had Date been critical in our design, we might have introduced a Day or a Year type to allow
stronger compile-time checking. For example:

class Year {
int y;

public:
explicit Year(int i) { y = i; } // construct Year from int
operator int() const { return y; } // conversion: Year to int

};

class Date {
Date(int d, Month m, Year y);
// ...

};

Date d3(1978,feb,21); // error: 21 is not a Year
Date d4(21,feb,Year(1978)); // ok

The Year class is a simple ‘‘wrapper’’ around an int. Thanks to the operator int() a Year is
implicitly converted into an int wherever needed. Thanks to the explicit constructor, an int can be
explicitly (only) converted into a Year. Because Year’s member functions are easily inlined, no run-time
or space costs are added. This reflects the rule for the design of C++ that to be useful, a facility mustn’t just
be elegant: it must also be affordable in real programs. We don’t have any strong rules for where such
added compile time checking is worth the added effort from the programmer. If necessary, such a simple
wrapper class can contain additional run-time checks.

Letting a class represent a single coherent concept (only) tends to lead designs away from hierarchies
based on very general base classes. This is good because over time such base classes tend to acquire data
and functions to the point where they become a burden. The classic example is a base class for a container
hierarchy. Such a class tends to provide a superset of the operations needed for individual containers. It
may, for example, provide operations for indexing, list operations, size adjustments, access to associative
data structures, etc. Because not every specific container can implement every operation on the ‘‘fat’’ con-
tainer interface, inefficiencies, run-time checking, and bugs result; see also [Stroustrup.1991,§13.6]. A
clean C++ program tends to be a forest of classes rather than a single large tree.

Naturally, many C++ designs violate one or more of our suggested rules. This is partly because not
everybody agrees about these design rules, and partly because of inexperience about design in the C++



- 30 -

community. There may very well be more good designers in the C++ community than in any other pro-
gramming community, but there certainly are more novices. The rapid growth of C++ usage ensures that.
We can teach design to small groups, and even to larger organizations. However, getting design technique
applied on a large scale (hundreds or thousands of programmers) is a task no language community has been
spectacularly successful at—yet.

7 Sociological Observations

A programming language by itself is useless. Unless supported by tools, techniques, and a user commu-
nity, a language is simply an intellectual plaything. There is a need for experimental languages, niche lan-
guages, languages devoted to the pursuit of beauty without compromise. However, C++ was never meant
to be one of those; it was designed and evolved to be a practical tool.

Like the success of C, the success of C++ was no accident. Naturally, a certain element of good fortune
was involved in both cases; nothing succeeds on a large scale without a bit of luck. However, a large part
of that success came from an effort to make C++ the best language possible, rather than the best possible
language.

Throughout its evolution, C++ was heavily influenced by a desire to make it a useful tool to a commu-
nity of potential users who already existed, whose problems we knew reasonably well. Another important
aspect was restraint: C++ was not allowed to grow without solid feedback on what we already had, without
practical experience with problem areas (where what we had felt ‘‘not good enough’’), and without con-
cerns for compatibility and transition issues. Theory was never a sufficient reason for adding something to
C++. Theory determines the form of what is added but not what is needed.

7.1 The best language possible
What is the best programming language? We have lost count of the number of times we have heard that
question asked and answered. Most of those questions and answers have little meaning because they focus
on language-technical issues to the exclusion of vitally important aspects of how a non-experimental pro-
gramming language is used: programming languages, like other tools, are useful only in context.

A context has several parts. For example:
[1] What problems, or kinds of problems, will the language be used to solve?
[2] What skills do the people have who might use the language? Which new skills are they able and

willing to acquire?
[3] What languages are available, or can be made available? What is the cost of making them avail-

able?
[4] How easy is it to obtain access to experts who can help answer the questions that inevitably arise?
[5] Are useful libraries available?
[6] Is it necessary for programs to work with other programs that already exist?
[7] What are the performance constraints?
[8] Will it become necessary to run one’s programs on other machines? If not now, what about later?
[9] Will the investment in time and money on a language, its tools, and techniques for this project, pay

off by having the language, etc., useful for other projects?
This list is, of course, incomplete, but it gives an idea of what influences the choice of a programming lan-
guage for a production system.

Notice that the nature of the language itself is directly relevant to only the first, second, and last ques-
tions on the list. The other questions pertain mostly to the available implementations and to the community
of users that surrounds the language(s) and implementations, the infrastructure of the language. This
implies that to be successful, a language must be designed with an eye to its likely implementations, the
communities of people who will be using it, and the purposes to which they will put it.

7.2 C++ and C
C++ was originally intended for the same kinds of applications as C. Although C started out as a language
in which to write operating systems, it has since been used for a wide variety of things that fall into the gen-
eral category of ‘‘system programming.’’ Such things often need to get at particular hardware facilities
through extralinguistic means. That implies that to remain useful for system programming, C++ must be
careful not to stray too far from the underlying machine (see §2).
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Because C++ was intended to be useful in the same areas as C, one major goal of C++ has been to do
everything C can, and do it as efficiently in time and space as C. Consequently, if one writes a C program
in C++, that program will be as fast and small as it would have been in C. This is not true of every C++
implementation, of course, but attainable in theory, and often achieved in practice. C++ even made a few
improvements on C in areas not related to abstraction. Some of those improvements, such as const types
and the ability to include argument types as part of a function declaration, found their way back into C.
Others, such as inline function definitions, did not.

The desire to do everything C can do is a strong constraint on C++. For example, it has made it infeasi-
ble to make the primitive C++ array and pointer operations any safer than their C counterparts. It is possi-
ble, of course, to define safe data structures as C++ classes, but in practice few C++ programmers have the
discipline needed to use such data structures exclusively. Thus, C is both a great strength of C++ and a
great weakness.

That C++’s relationship with C wouldn’t be easy was clear from the start. We like aspects of C, but
some key elements of the C language and culture are most disruptive to people trying to write more abstract
programs and trying to reason about programs. For example, the C preprocessor is essential for real-world
C programming, but is also a menace: any piece of source text may turn out not to be what it appears to be
because a macro substitution may radically change what the programmer wrote before the compiler sees it.

The traditional academic response to such problems seems to be ‘‘ban it!’’ The C++ answer has been:
first make the obnoxious feature redundant, then discourage its use; finally we may actually consider ban-
ning the now-unused feature. This strategy is slow and often frustrating, but it respects people’s practical
needs in a way a more radical approach doesn’t. C++ doesn’t yet have facilities that make the C preproces-
sor completely redundant, but inline functions, constants, namespaces, templates, etc., allow a programmer
to restrict the use of preprocessor facilities to a minimum related to source code management.

The policy regarding C/C++ compatibility has been expressed as: ‘‘As close to C as possible—but no
closer’’ [Koenig,1989]. In practice, this means that C++ accepts any C feature—however ugly—as long as
it does not interfere with the type system. This policy has kept incompatibilities to an easily manageable
minimum.

C is the de facto measure of efficiency. People generally accept that if something runs as fast as well-
written C it is fast enough. If it doesn’t, criticism results—fair or not. Since its inception, one of the aims
of C++ has been to make it possible to write programs that are not only abstract, but also run quickly.
Throughout the lifetime of C++, and well before it, people have argued that such emphasis on run-time per-
formance is unnecessary.

The typical argument runs something like this: ‘‘Computers are so fast these days that we can afford to
give up some of that speed if by doing so we gain something in exchange.’’ That something might be
development time, or safety, or whatever the favorite language of the person making the argument has to
offer. Such arguments are often valid, but not always, and it is not easy to tell when they will be important
and when they will not.

For small programs—such as many student projects and prototypes—efficiency rarely matters. Larger
systems, however, often consists of many layers of software. If overhead is allowed to build up in the indi-
vidual layers, the total system becomes glacial. Naturally, if the overhead in an individual layer is really
support for subsequent layers so that these layers become simpler and faster then this doesn’t happen.
Unfortunately, we have found this happy phenomenon less common than one might have hoped. In the
absence of such synergies, the language with the most efficient low-level semantics—that is, C or C++—
wins. Of course, when one is developing programs for one’s self or one’s immediate circle, such issues are
less important. That is one of the ways in which C++ has been guided by the requirements of commercial,
rather than academic, users.

Finally, there are application areas where efficiency is paramount. If you are writing an operating sys-
tems kernel or a network driver you don’t want any fat on your code—for any reason. For hard real-time
applications you have the additional requirement that the performance of every feature must be absolutely
predictable as well as sufficiently fast. C++ meets the requirements here.

By being C-compatible, C++ was able to benefit from C’s libraries easily, directly, and without over-
heads. The benefits of that are inestimable because it gives the C++ programmer access to the largest col-
lection of new and old code available. It made the difference between early C++ being a toy and being a
tool. In addition to gaining access to libraries written in C, link and layout compatibility with C allows C++
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programs to call routines in languages with a C compatible calling sequence, such as Fortran and assembler
on many systems. Further, C++ functions can be called from such languages. This allowed C++ to be used
to write libraries for use from other languages from day one.

7.3 C++ and Other Languages
We have seen other languages as a fertile source of ideas. Programming languages are fun to play with and
it is hard to imagine a modern language—except purely commercial hacks—from which one cannot learn
something important.

One cannot simply graft a feature from one language on to another, however. The influence in more
subtle. In addition to the ‘‘parent languages’’ C and Simula, we can see traces of Ada, Algol68, Clu, and
ML in C++. Many more languages, including Lisp, have inspired programming techniques.

Judging from the net, discussions in the literature, remarks at conferences, etc., the relationship between
languages is supposed to be antagonistic and dominated by fierce commercial rivalries. This has left
few—if any—traces in the definition of C++, and ‘‘marketing strategy’’ never took significant amount of
time from the technical work on C++. The primary reason for this is that in the early years (say until 1989),
C++ didn’t have any marketing. It grew as a completely disorganized grass-roots movement. The repeated
rumors that C++ succeeded because of ‘‘large corporation backing’’ are the products of overexcited imagi-
nations of would-be commercial competitors. In fact, AT&T spent the grand sum of $3000 on C++ adver-
tising in the critical 1985-1989 period. No one could seriously attribute C++’s success to that. The other
theory, that C++ was first in the field of OO languages and thus established itself before any competition
arose, is equally at odds with facts. C++ became commercially available in October 1985. Ada, Smalltalk,
Objective C, and some Lisp dialects were commercially available well before that and even Eiffel was at
most half a year behind.

In explaining C++’s success, we fall back on less interesting reasons: C++ was a reasonable language,
cheap, easy to port, fast, coexisted well with other languages, and relatively easy to learn.

C++ owes a good part of its success to the fact that it was able to build on the existing C community. In
our experience, the only alternative to building on an existing community is to pick a set of problems for
which no widely acceptable solution exists.

The first C++ compiler—and the only one for several years—compiled C++ into C instead of assembly
language or machine language. This allowed people to port C++ to a new computer in a matter of days
instead of months, provided only that the machine already had a C compiler. This guaranteed that C++
could be readily made available on any machine that supported C, which opened the entire C community as
potential C++ users. This approach has since become popular as a method of making new languages avail-
able [Stroustrup,1994§3.3].

The programming language one uses will be influenced in practice by the languages one’s neighbors
use. This is true of natural languages as well as programming languages, of course. English is the world’s
most widespread second language. The reason is that lots of people speak it already, that there is a signifi-
cant English literature, that more technical information is available in English than in other languages, etc.
The facts that English (as actually used) doesn’t have a fixed grammar, that English spelling is an arcane
art, that idiomatic English is fiendishly difficult and varies from place to place and from time to time, that
English has more words than any other language, etc. don’t seem to matter. The benefits of knowing
English make it worth more effort than most other languages. In addition, it is relatively easy to speak
English badly, and people accept poor English as long as it effectively conveys information. We believe
similar phenomena are occurring with C++.

7.4 Learning to use C++
In two hours, it is possible to teach a C programmer enough C++ to make that programmer noticeably more
productive. In a week, it is possible to teach a C or Pascal programmer enough to be a functioning C++
programmer in the sense of being able to write code without looking in the manual all the time. It usually
takes six to eighteen months for a programmer to become genuinely comfortable with object-oriented
design to the point where the proper use of most C++ language features feels natural enough to be unnoticed
in the larger task of building software.

Exceptional programmers can do better yet. However, C++ wasn’t designed for exceptional program-
mers. You don’t have to be a genius to be a good C++ programmer.
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The estimate of the time needed to become comfortable with C++ and object-oriented design is based on
the assumption that the programmer/designer learns on the job and stays productive—usually by program-
ming in a ‘‘less adventurous’’ style of C++ during that period. If one could devote full time to learning
C++, one would be comfortable faster. However, without application of the new ideas on real projects that
degree of comfort could be misleading. Object-oriented programming and object-oriented design are
practical—rather then theoretical—disciplines. Unapplied, or applied only to toy examples, these ideas can
become dangerous ‘‘religions.’’

The time-consuming thing to learn about C++ is not syntax, but design concepts. A good indication of
poor appreciation of C++ is code littered with casts (explicit type conversions). Often, the casts are the
result of someone writing C or trying to write Smalltalk in C++.

Our observation is that most people who are aware that there is something to be learned can learn C++
well in a reasonable amount of time. The people who fail, and in consequence write appalling C++ and
complain a lot, are in our experience mostly people who approach C++ with the attitude that they know all
there is to know about programming so that all they have to do is to pick up ‘‘a bit of odd syntax.’’ Unfor-
tunately, some such people proceed to teach C++ or even write C++ textbooks, and their students then suffer
with them.

8 Conclusions

The C++ programming language has evolved in response to its user community. Managing that evolution
hasn’t been easy, but new language features, techniques, and libraries had to be developed to meet the
needs of a growing user community. The coming ISO/ANSI standard should herald a period of stability of
the language definition that ought to set of an explosion of work on tools, techniques, and libraries.

The key problem is education. To use C++ well—or any other language supporting abstraction
mechanisms—people must focus on design issues, and teaching design on a large scale is not easy.
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