Foundationsfor Native C++ Styles

Andrew Koenig
Bjarne Sroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Over the past decade, C++ has become the most commonly used language for intro-
ducing object-oriented programming and other abstraction techniques into production
software. During this period, C++ has evolved to meet the challenges of production sys-
tems. Inthis, C++ differsradically from languages that come primarily from academic or
research environments, and from less widely used languages. Although C++ has aso
been extensively used in academia and for research, its evolution was driven primarily by
feedback from itsuse in industria applications.

In this paper, we focus on three design areas key to successful C++ use. In doing so, we
explore fundamental C++ concepts and facilities and present distinctive C++ design and
programming styles that have evolved to cope with the stringent demands of everyday
systems building. First we explore C++'s support for concrete data types and containers
and give examples of how the C++ generic programming facilities, together with well-
designed libraries, can yield flexibility and economy of expression. Next we examine
some uses of class hierarchies, touching on issues including encapsulation, interface
design, efficiency, and maintainability. Finally, we note that languages succeed for rea-
sonsthat are not entirely technical and review the background for C++'s success.

This paper isnot a C++ tutorial. However, it does include enough code examples and
supporting commentary that readers familiar with programming languagesin general but
unfamiliar with Ct++ can grasp the key C++ language constructs and programming tech-
niques.

1 Introduction

C++ was designed to combine the strengths of C as a systems programming language with Simula’ s facili-
ties for organizing programs. During the 60’s and 70’ s, the key concepts, techniques, and language features
for what came to be known as ‘* object-oriented programming’’ and ‘‘ object-oriented design’’ had devel-
oped in connection with the Simula language. During the 80's, C’s close-to-the-machine semantics gave it
the edge in run-time and space efficiency, portability, and flexibility that established C as the dominant sys-
tems programming language.

Thus C++ started from a sound theoretical and practical basis. Feedback from widespread use guided its
further evolution. Ct++ supports the design and efficient implementation of elegant programs from toy
examplesto very large systems.

Over the years, distinct C++ styles of design and programming have evolved. This evolution has pro-
gressed to the point where we can identify and explore key notions and techniques.

2 Extending C’'sModél of Systems Programming

A fundamental property of computers in widespread use has remained remarkably constant: memory is a
seguence of words or bytes, indexed by integers called addresses. Modern machines—say, designed during
the last 20 years—have in addition tended to support directly the notion of a function call stack. Further-
more, all popular machines have some important facilities, such as input-output, that do not fit well into the
conventional byte- or word-oriented model of memory or computation. These facilities may require special
machine instructions or access to ‘‘memory’’ locations with peculiar addresses. Either way, from a
higher-level language point of view the use of these facilities is ‘‘messy’’ and machine-architecture-
specific.

C is by far the most successful language designed to exploit such computers by providing the program-
mer with a programming model that closely matches the machine model. C directly provides language-
level and machine-architecture-independent notions that directly map to the key hardware notions. charac-
ters for using bytes, integers for using words, pointers to use the addressing mechanisms, functions for pro-
gram abstraction, and an absence of constraining language features so that the programmer can manipulate
the inevitable messy hardware-specific details. The net effect has been that C isrelatively easy to learn and
use in areas where some knowledge of the real machine is a must or ssimply a benefit. Moreover, Cis easy
enough to implement that it has become available virtually everywhere.

The other main trend in programming languages—particularly in the academic community—has been
to try to define a machine-independent semantics for alanguage. The goal isto get the language away from
the messy details of computer hardware such as bytes and pointers, and allow programmers to operate in a
provably sound and logically simple universe. Sometimes, this is expressed as providing an ideal virtua
machine for the programmer. Lisp is the most prominent of these languages, but almost all high-level lan-
guage designs aim to hide the fundamental s of the underlying machine from the programmer.

The results from this idealistic school of language design have not been uniformly encouraging. The
semantic bases of such languages are cleaner and simpler than that of languages such as C. However, each
language family has a different semantic base, which means that a systems programmer in one of these lan-
guages must learn both the high-level semantic base of the programming language and the low-level one of
the machine. Consequently, even if learning the higher-level language is easier than learning C, learning C
has for many proven easier than learning the higher-level language plus the machine model. This trend has
been amplified where operating systems add their own layer of interfaces and conventions to the set of con-
cepts to be mastered. Traditionally, these interfaces and conventions are close to the machine in the way C
is. Indeed, operating systems sometimes describe their interfaces only in C terms, leaving the machine
model unspecified beyond that.

Generating code for a language with semantics that are not close to the traditional bytes-and-pointers
machine architectures has been a constant problem. It is not unusual to pay a factor of three or ten in run-
time for a higher-level semantics, especially when those semantics include the notion that the type of an
expression is not knowable until that expression is evaluated during program execution.

If C gainsits advantages from a match with traditional machine architectures, perhapsit is reasonable to
try to design new machine architectures to fit higher-level languages. As aresult, there has been a steady
stream of high-level machine architectures for particular families of languages. Unfortunately, this
approach has repeatedly run aground on two rocks. Each higher-level language family has a different
semantic base so that a machine optimized for one such language base becomes useless—or at least
uneconomical—for al other such languages as well as for traditional languages such as C and Fortran.
Also, as the semantic base of a higher-level language is extended to deal with the various forms of messi-
ness necessary to deal with a complete computer system (e.g. multiple users, 1/0 devices, security, hard-
ware diagnostics) some of that messiness leaks into the semantic base itself—thereby diluting its appeal.

Worse yet, amost everybody who pays for computers uses traditional languages and all large hardware
manufacturers have a strong financial interest in traditional architectures. Therefore, the best tools, the
largest number of hardware designers, the newest hardware technologies, the best production facilities, and
the most money is spent on bytes-and-pointers architectures. Consequently, high-level machine architec-
tures tend to be a generation or two behind the state of the art and never become cost effective.

C++ was designed to dodge the dilemma that machine-level language semantics, as in C, had a funda-
mental advantage, yet the programming model offered by languages such as C constrained the kinds of
applications that could be successfully built. The solution chosen for C++ was to augment the low-level

language features with powerful, yet affordable abstraction mechanisms[Stroustrup,1985]:
“*A programming language serves two related purposes. it provides a vehicle for the programmer to
specify actions to be executed and a set of concepts for the programmer to use when thinking about
what can be done. Thefirst aspect ideally requires alanguage that is *‘ close to the machine,”’ so that all
important aspects of a machine are handled simply and efficiently in away that is reasonably obviousto
the programmer. The C language was primarily designed with thisin mind. The second aspect ideally
requires alanguage that is *‘ close to the problem to be solved'’ so that the concepts of a solution can be
expressed directly and concisely. The facilities added to C to create C++ were primarily designed with
thisin mind.”
Given both machine-level facilities and abstraction mechanisms, there is a danger of opening a semantic
gap between the two sets of facilities. That is, alanguage might offer the programmer the choice between
writing efficient code (using machine-level facilities) or elegant code (using abstraction). Thiswas not con-
sidered an acceptable choice to offer C++ programmers. It was essential to provide abstraction facilities
that could be used to write user-defined types with little or no overhead compared to C or even assembly
code. To be useful in this context a mechanism can’t just be elegant, it must also be affordable.

3 Efficient User-defined Types

Small heavily used abstractions are common in many applications. Examples are characters, integers, float-
ing point numbers, complex numbers, points, pointers, coordinates, transforms, (pointer,offset) pairs, dates,
times, ranges, links, associations, nodes, (value,unit) pairs, disc locations, source code locations, BCD char-
acters, currencies, lines, rectangles, scaled fixed point numbers, numbers with fractions, character strings,
vectors, and arrays. Every application uses several of these; a few use them heavily. A typical application
uses afew directly and many moreindirectly from libraries.

C and other programming languages directly support a few of these abstractions. However most are
not, and cannot be, supported directly because there are too many of them. Furthermore, the designer of a
genera-purpose programming language cannot foresee the detailed needs of every application. Conse-
guently, mechanisms must be provided for the user to define such small concrete types. It was an explicit
aim of C++ to support the definition and efficient use of such user-defined data types very well. They were
seen as the foundation of elegant programming. As usual, the simple and mundane is statistically far more
significant than the complicated and sophisticated.

Hereisadeclaration of aDate class:

class Date ({
public: // public interface:

enum Month { jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec };

Date(int d, Month m, int y); // constructor

// functions for examining the Date:

int day() const;

Month month () const;

int year () const;

string string rep() const; // return string representation

void char_ rep(char s[]) const; // place C-style string represen-
// tation in C-style array s

// functions for changing the Date:

Date& add_year(int n); // add n years

Date& add month(int n); // add n months

Date& add day(int n); // add n days
private:

int d, m, y; // representation

Vi

Ct+uses { } to delimit scopesand // to start comments. ‘‘Class’ isthe C++ term for a user-defined type.
In declarations, asuffix () isused to specify afunction, and a suffix & means'‘referenceto.”” Thus,

Date& add_year (int n);

declares afunction taking an integer argument and returning areferenceto aDate. Thetypevoid isused
to specify that a function doesn’t return avalue.

The set of operationsisfairly typical for a user-defined type:

[1] A constructor specifying how objects/variables of the type are to be initialized. Inthiscase, aDate
can be created given three integers representing the year, month, and day.

[2] A set of functions allowing a user to examine aDate. In this case, functions returning integers rep-
resenting the year, month, and day are provided, and also two functions returning a character string
representations of the Date. The char[] is a C-style array of characters, string is the C++
standard library string type. These functions are marked const to indicate that they don’t modify
the state of the object/variable they are called for.

[3] A set of functions allowing the user to manipulate Dates without actually having to know the
details of the representation or fiddle with the intricacies of the semantics.

[4] In addition to the explicitly declared operations, Dates can be freely copied.

Declared properties are checked at compile time. For example, if afunction not declared in classDate tries
to use aprivate member, that function will cause the compiler to issue an error message. Similarly, the
const member functions do not modify the state, etc.

Here is a small—and contrived—example of how Dates can be used:

void f (Date& today)

{

Date lvb day = Date(16,dec,today.year());

if (today.day()==29 && today.month()==feb) {
//
}

if (midnight()) today.add day (1) ;

cout << "Today'’s date:" << today << ’'\n’;

}

This assumes that the output operator << has been declared for Dates, which we will do in §3.3.
Why is it worthwhile to define an abstract type for something as simple as a date? After all, we could
define a structure:

struct Date {
int day, month, year;

and let programmers decide what to do with that. If we did that, though, every user would either have to
manipulate the components of Dates directly or provide separate functions for doing so. In effect, the
abstraction would be scattered throughout the system, which would make it hard to understand, document,
or change. Inevitably, providing a concept as only a simple structure causes extra work for every user of
the structure.

Also, even though the Date type seems simple, it takes some thought to get right. For example, incre-
menting a Date must deal with leap years, with the fact that months are of different lengths, and so on.

Also, if we ever need to change the representation of Date it is useful that the representation be used only
by a designated set of functions. For example, if we decided to try representing a Date as the number of
days before or after January 1 year O then only the functions declared in the declaration of Date would
need changing.

3.1 Defining Member Functions
Naturally, an implementation for each member function must be provided somewhere. For example, hereis
the definition of Date’s constructor:

Date::Date(int dd, Month mm, int yy)

{

Yy = YYi
m = mm;
d = dd;
int max;

switch (mm) {

case feb:
max = 28+leapyear (yy);
break;
case apr: case jun: case Sep: case nov:
max = 30;
break;
case jan: case mar: case may: case jul:
case aug: case oct: case dec:
max = 31;
break;
}
if (d<l || max<d) throw "bad day";

}

The constructor checks that the data supplied denote a valid date. If not, say for
Date (30,Date: :feb, 1994), it throws an exception, which indicates in a way that cannot be ignored
that something went wrong. For more information about exception handling, see [Stroustrup,199189]. If
the data supplied are acceptable, the obvious initialization is done. Note that initialization is a relatively
complicated operation because it involves data validation. On the other hand, once a Date has been cre-
ated, it can be used and copied without further checking. In other words, the constructor establishes the
invariant for the class (in this case, that it denotes a valid date). Other member functions can rely on that
invariant and must maintain it. This design technique can simplify code immensely [Strous-
trup,1991812.2.7.1] [Stroustrup,1994813.2.4].

Most functions are trivial or almost trivial:

int Date::day() const

{
}

return d;

Date& Date::add year (int n)

{
if (d==29 && m==feb && !leapyear (y+n)) ({
d = 1;
m = mar;

y += n;
return *this;

}

The notation *this refers to the object for which a member function is invoked. It is equivalent to
Simula's THIS and Smaltalk’s self. Returning a self-reference is a useful convention that allows

chaining of operations. For example:

someday.add day (1) .add month(1l) .add year(1);

adds a day, amonth, and ayear to someday.

Asis common for such simple concrete types, the definitions of member functions vary between trivial
and not-too-complicated. Some, such as incrementing a month, are tricky enough to make it worthwhile
designing a suitable set of interface functions rather than leaving the manipulation of the data structure
completely to users.

3.2 Helper Functions
Typically, a class has a number of functions associated with it that need not be defined in the class itself
because they don’t need direct access to the representation. For example:

int diff (Date a, Date b); // number of days in the range [a,b) or [b,a)
bool leapyear (int vy);

Date next weekday (Date d);

Date next saturday(Date d);

Defining such functions in the class itself would complicate the class interface and increase the number of
functions that potentially needed to be examined when a change to the representation is considered.

How are such functions ‘‘associated’’ with class Date? Traditionaly, their declarations were simply
placed in the same file as the declaration of class Date, and users who need Dates would make them all
available by ‘‘including’’ the file defining the interface, as

#include "Date.h"

However, this still leaves the association implicit as far as the C++ language rules are concerned, and the
names pollute the global name space. A more recent approach is to enclose the class and its helper func-
tions in a namespace:

namespace Chrono { // facilities for dealing with time

class Date ({

//
Vi

int diff (Date a, Date b);
bool leapyear (int y);

Date next_ weekday (Date d) ;
Date next saturday(Date d);

//
}

Names from a namespace can be used by explicitly qualifying them with the namespace name or by intro-
ducing an dias. For example:

void f (Chrono: :Date d)

{
}

Chrono: :Date next sunday = Chrono::next saturday(d).add day(1);

or

using Chrono::Date; // introduce alias ‘‘Date’’
void f (Date d)
{

using Chrono::next saturday; // introduce alias ‘‘next saturday’’

Date next sunday = next saturday(d).add day(1);

If detailed control of namesis not required, all the names from a namespace can be made available by asin-
gle declaration:

using namespace Chrono; // make all names from Chrono available

void f (Date d)

{
}

Using the more discriminating ways of referring to names in a namespace is less likely to lead to name
clashes and surprises [Stroustrup1994817].

Date next sunday = next saturday(d).add day (1) ;

3.3 Overloaded Operators
It is often useful to add functions to enable conventional notation. For example, the operator== func-
tion defines C++'s equality operator to work for Dates.

bool operator==(Date a, Date b); // equality
{
return a.day()==b.day/()
&& a.month () ==b.month ()
&& a.year ()==b.year();

}

Other obvious candidates are:

bool operator!=(Date, Date); // inequality
bool operator< (Date, Date) ; // less than
bool operators>(Date, Date) ; // greater than
//

Date& operator++ (Date& d) // increase date by one day
Date& operator-- (Date& d); // decrease date by one day

Date& operator+=(Date& d, int n); // add n days
Date& operator-=(Date& d, int n); // subtract n days

ostream& operator<<(ostream&, Date d); // output d
istream& operators>>(istream&, Date& d); // read into d

For Date, these operators can be seen as mere conveniences, but for many types—such as complex num-
bers, arrays, and function-like objects—the use of conventional operators is so firmly entrenched in
people's minds that their definition is aimost mandatory. Usually, it is wise to define only operators that
are conventional for a given type and to define them to have their conventional meaning.

When thinking about operator overloading, most people seem primarily to think of arithmetic operators
such as + and -. In our experience, assignment, =, subscripting, [1, and application, () are both more
commonly useful and more fundamental to the types for which they are used.

3.4 The Significance of Concrete Classes

We call such simple user-defined types concrete types to distinguish them from abstract types as presented
below and to emphasize their similarity to built-in types such as int and char. They have also been
caled ‘‘value types,’”’ and their use ‘‘value-oriented programming.’”” Their model of use and the ** philoso-
phy’’ behind their design are quite different from what is often advertised as ‘* object-oriented program-
ming."”’

Theintent of aconcrete typeisto do asingle relatively small thing well and efficiently. It isnot usualy
the aim to provide the user with facilities to modify the behavior of a concrete type. In particular, concrete
types are not intended to display polymorphic behavior (see 85.2).

If you don’t like some detail of a concrete type, you build a new one with the desired behavior. If you
want to ‘‘re-use’’ a concrete type you use it in the implementation of your new type exactly as you would
haveused an int. For example:

class Date _and time
private:
Date d;
Time t;
public:
Date and time(Date d, Time t);
Date_and time(int d, Date::Month m, int y, Time t);
/] ...
}i
The derived class mechanism described in 85.2 can be used to define new types from a concrete class by
describing the desired differences, but that implementation technique is beyond the scope of this paper; see
[Stroustrup,199482.9.1].

A concrete class such as Date needs no hidden overhead in time or space. The size of a concrete type
is known at compile time so that objects can be alocated on the run-time stack (that is, without free-store
operations). The layout of each object is known at compile time so that inlining of operations is trivialy
achieved. Similarly, layout compatibility with other languages, such as C and Fortran, also comes without
special effort.

A good set of such types can provide a concrete foundation for applications. We feel that many pro-
gramming languages have neglected concrete types. Lack of support for ‘*small efficient types’ can lead
to gross run-time and space inefficiencies when overly general and expensive mechanisms are used. Alter-
natively, it can lead to obscure programs and wasted time when programmers are forced to discard expen-
sive abstraction mechanismsin favor of direct manipulation of data structures or lower-level languages.

4 Containersand Generic Programming

As one would expect from a language with a strong emphasis on facilities for designing and using ssmple
types, C++ doesn't provide sophisticated data structures as built-in types. In this, C++ follows a tradition
stretching back to Algol60 of supporting nontrivial concepts, such as input/output, through libraries. Lan-
guages following thisideainclude C, Lisp, Beta, Eiffel, and Smalltalk.

It is not sufficient to provide only simple data structures. Doing that just forces every programmer to
reinvent the whedl. Instead, library types must be supplied with the basic operations needed to use them.
For example, C doesn’t provide a proper string type. Instead it provides a convention for using arrays of
characters and a set of functions for manipulating such strings.

A string is one of the simplest examples of a criticaly important kind of type, the container. A con-
tainer is an object used to hold other objects. Other examples are vectors, lists, maps (sometimes called
associative arrays and dictionaries), sets, and queues.

In addition to input/output streams and proper character strings, the C++ standard library provides these
and other containers [Koenig,1995]. It also provides the basic operations needed to use the containers.
These operations—conventionally called algorithms—include sorting, merging, facilities for iterating over
containers, facilities for applying operations of elements in containers, etc. The standard library facilities
for containers and generic algorithms are derived from Alex Stepanov’'s STL library [Stepanov,1994]
[Vilot,1994]. This section explores some of the principles behind the STL and some of the techniques used
to express them.

4.1 An Elementary Data Structure
A library of fundamental datatypesisvaluable only if the types provided by the library are about as easy to
use as built-in types. As an example, we will examine how to handle variable-length arrays first in C and
thenin C++.

C’'s notion of an array matches traditional machine hardware exactly: An array has a fixed size (known
at compiletime), and it istrivial to obtain pointers to elements of the array. For example:

void £1() /* C or C++ function */

{

#define n 1000
int squares[n];
int 1i;

for (i = 0; 1 < n; ++1i) squares[i] = i*i;

/* use squares */

}

creates an array containing n integer values with indices 0 through n-1 and sets each element to the square
of itsindex. Unfortunately, the size of such an array, in this case n, must be a compile-time constant.

In C, avariable-length array is usually smulated using the library functions malloc and free that
deal in raw memory. For example:

void f£2(n) int n; /* a C function */

{

int *squares = malloc(n * sizeof (int));
int 1i;

for (i = 0; 1 < n; ++1) squares[i] = i*i;
/* use squares */

free (squares) ;

}

To make this work, C supports aform of type punning—it is possible to take an array of one type and treat
the memory it occupies as if it really contained memory of another type. This makes it possible to assign
the result from malloc to squares. C's definition of indexing is what makes it possible to refer to
squares [1i] asif it were an element of an array. Probably the greatest inconvenience of using C this
way is the requirement to free the memory explicitly when done with it.

Now let us look at how C++ handles variable length arrays. As with built-in arrays, C++ library arrays
are one-dimensional. Multi-dimensional arrays are most commonly used for numerical computation, which
is supported by a separate numerical library. A one-dimensional array is called a vector, and is used
something like this:

void £3(int n) // C++ function

{

vector<int> squares (n) ;
for (int i = 0; 1 < n; ++1i) squares[i] = i*i;

// use squares

}

This is not much more difficult than using a built-in array: As for the built-in arrays, there is no special
requirement to free the memory used by squares; that memory is automatically freed when the variable
goes out of scopet.

Making this work for an array size that is not a compile time constant and for an array that is a user-
defined type requires the ability

T Because £3 () uses free store and £1 () uses the stack, £3 () incurs a fixed allocation overhead, which depends, among other
things, on how fast the system’s memory allocator is and how much trouble the compiler takes to optimize uses of the standard library.
In the (worst and unrealistic) case where use squares was nothing, with a compiler that uses the allocator that comes with the machine
and no special optimization, we measured the overhead to be to between a factor of 2 and a factor of 3 depending on the size of the
vector. On the other hand, when use squares was printing out the vector there were no measurable performance difference. We timed
an intermediate example, where use squares was to take the square root of each element. In this case, the overhead varied from 5% to
58% depending on the size of the vector. We leave it for the reader to decide in which situations the overhead might be significant.
There are no significant overhead in £3 () compared to use of C-style variablelength array in £2 () .

-10-

[1] for vector<int> to be adistinct type from, say, vector<float>;

[2] for the library to define what it means to create an object of type vector<int> with a particular

parameter;

[3] to define the meaning of subscripting (for example squares [1]); it no longer suffices to use the

C array/pointer equivalence;

[4] to say what happens when avector goes out of scope.

Indeed, much of the complexity in C++ isthere primarily for use by library authors. More language mecha
nism is needed to allow alibrary to define useful arrays than would be needed to include a particular defini-
tion of arraysin the language itself.

As one would expect from a data structure implemented in a library, more operations are available than
just the most elementary ones. For example, suppose we wanted our vector squares to contain only val-
ues greater than 1000. Taking advantage of our knowledge that we stored values in squares in ascending
order, we might like to find the first element greater than 1000, copy that one and all the subsequent onesto
the beginning, and then shrink the vector to the appropriate size. Here is a straightforward way to do
that:

void gl (vector<int>& squares)

{

int n = squares.size();
// find first square greater than 1000:

int k = 0;
while (k<n && squares([k]<=1000) ++k;

// move larger squares:

int j = 0;
while (k < n) squares([j++] = squares[k++];

// resize squares so that its size becomes m

}

In addition to missing the part that resizes square, this code is tedious and error-prone. What we really
want to do is two things:

[1] find thefirst element, if any, of squares that is greater than 1000, and

[2] erase the elements of squares before the one we found.
The library offers ways to do that directly. First we write a predicate function, which checks if its argu-
ment is greater than 1000:

bool bigger1000(int n) { return n > 1000; }

Next we use a standard library function called £ind to locate the first element for which bigger1000 is
true:

void g2 (vector<int>& squares)

{

vector<ints>::iterator vi =
find if (squares.begin(), squares.end(), biggerl000) ;

// resize squares so that its size becomes m

}

Thislast example introduces three things we haven’t seen before:
[1] the library defines a type vector<int>: :iterator that can be used to mark a location in a
vector<ints>;
[2] every vector has a pair of member functions called begin and end, which return iterators that
identify the initial element and a point one past the last element of the vector; and
[3] thelibrary function £ind_1if locatesthe first element between the points identified by two iterators
that satisfies the property given by itsthird argument. In this case, the third argument is a pointer to

-11-

thefunctionbigger1000 (); £ind if callsthrough that pointer to check each element.
After calling £ind_if, the vector iterator vi will identify either the first element of squares that is
larger than 1000 or a point one past the end of squares. All that is left to do is erase the elements of
squares starting at the beginning and ending just before vi:

void g3 (vector<int>& squares)

{

vector<int>::iterator vi =
find if (squares.begin(), squares.end(), biggerl000) ;
squares.erase (squares.begin(), vi);

}

This will work even if vi points past the end. Of course, we can combine these two expressions and do
away with the local variable vi:

void g4 (vector<int>& squares)

{

squares.erase (squares.begin(),
find if (squares.begin(), squares.end(), biggerl000)) ;

4.1.1 Library Support for Predicates
For many, g4 () is as terse, elegant, and efficient as they could wish. However, we can do better till
because the library offers some tools for building objects that behave like predicate functions. Let us see
how we can eliminate the predicate bigger1000 () and replace it with standard library features. The
point of thisisto demonstrate that when the basic library facilities become familiar, it becomes unnecessary
to invent tiny functions just to implement trivial predicates.

There is a library type caled greater<int> whose objects take a pair of integers and determine
whether the first is greater than the second. In other words, if we declare

greater<int> gt;

thengt (3,4) wouldbefalse andgt (4, 3) would be true. These objects are not truly functions, but
they act like functions. We therefore call them function objects.

Thereis also alibrary function called bind2nd that takes a predicate and a value and yields an object
that, when called with a single argument, applies the predicate to that argument and the value. Thisis con-
fusing to describe, but easy to use:

(bind2nd (gt, 1000)) (999)
isfalse and
(bind2nd (gt, 1000)) (1001)

is true. We can therefore use bind2nd (gt, 1000) as our predicate instead of bigger1000 ()
when calling find if:

void g5()
greater<int> gt;

squares.erase (squares.begin(),
find if (squares.begin(), squares.end(),
bind2nd(gt, 1000)));

}

Again, we can go further still by eliminating the local variable gt. The explicit constructor call
greater<int> () will servethe same purpose by creating an anonymous object:

-12 -

void g6 ()

{

squares.erase (squares.begin(),
find if (squares.begin(), squares.end(),
bind2nd (greater<int> (), 1000))) ;

}

We can think of the body of this function as meaning
‘*Remove from squares al the elements up to and not including the first element that is greater
than 1000."”’

For programmers without experience with functional languages, this may appear confusing at first
glance, but that is mostly because of unfamiliarity. Once one understands what the original operations do,
we find this code easier to understand than the origina *‘ straightforward’’ version, g1 (). It isalso easier
to convince ourselves of its correctness.

Importantly, the notational convenience of gé () has not been bought at the cost of run-time ineffi-
ciency compared to the conventional C-styleversiongi () .

4.2 Another Elementary Data Structure

People who mostly use languages that, like C, Fortran, Basic, or Pascal, support arrays more conveniently
than lists often use arrays when they really wanted lists. People who mostly use languages that, like Lisp or
ML, support lists more conveniently than arrays, are similarly biased toward lists. Our squares example,
contrived as it is, illustrates an array bias that could be expensive: deleting the initial k elements of an
n-element array will rarely be faster than deleting the initial k elements of an n-element list and may well
be much slower. Suppose we wanted to use lists instead of vectorsin our squares example. How would
wedoit?

Using listsin C is so messy that we will leave it to the reader as an exercise. The standard C++ library
provides lists that are about as easy to use as arrays. The main difference from the viewpoint of this exam-
pleisthat lists do not offer an indexing operation. We must therefore use one of several available ways of
appending an element to alist; the most convenient in the present context looks like this:

void fill(list<int>& squares)

{
}

Here, insert back isamember function that appends an element to the end of a 1ist. This makes it
possible to build up a list of n elements without having to use indexing. Indeed, class vector has a
insert back () member function aswell, so the loop above would work both for vectorsand 1ists.

Not only that, but if we want to find the first element of squares that is greater than 1000 and remove
everything before it, the same expression as before will work here too:

for (int i = 0; i<n; ++1) squares.insert back(i*i);

void h(list<int>& squares)

{

squares.erase (squares.begin(),
find if (squares.begin(), squares.end(),
bind2nd (greater<int> (), 1000)));

}

Interestingly, athough the expression is the same, many of its components have different types when
squares isalist than they do when squares isavector. So, for example, squares.begin ()

yieldsavaueof type list<int>: :iterator when squares isalist<int>,the find if func-
tion needs to execute completely different code (because accessing the elements of alist is different from
accessing the elements of a vector), and so on. It is common for things like this to be possible in languages

T Naturally, the performance of such functions isimplementation dependent and it is not easy to say what a comparison of such simple
examples really means. However, it might be relevant to mention that we measured g1 () (C-style) to be on average 5% slower than
g4 () (STL Using bigger1000) and on average 15% slower that g6 () (pure STL library). Inlining is the reason that g6 isfaster
that g4 ().

-13-

like Lisp or Smalltalk, where types are not determined until execution time, but it is unusual in languages
that support strong static typing. What in C++ makes this possible?

4.3 Function Templates and Compile-time Polymor phism

Object-oriented programming is built on top of run-time polymorphism: the ability to choose, during pro-
gram execution, among functions with similar signatures defined as members of a collection of related
types. We will look at that style of programming in more detail in 85. In addition, C++ has function tem-
plates, which offer a kind of compile-time polymorphism: every template offers a choice, made during
compilation, among operations on types that may be completely unrelated.

Function templates are similar to the generic operations provided in languages like CLU, Modula-3, and
Ada. However, they they are unusualy flexible in the sense that they work both with built-in and user-
defined types and do not require explicit declaration of the types with which they will eventually be used.

Hereisasimple example:

template<class T> T abs(T x)

{

if (x < 0) return -Xx;
return Xx;

}

Theword class above simply means ‘‘type:;’’ T can represent any type, not just a user-defined type. So,
for example, abs (-3) is 3 (and hastype int), abs (-42.1) is42.1 (and has type double), and so
on.

This template defines abs for any type T that supports copying, unary -, and binary <. That implies,
among other things, that it does not work for complex numbers because they do not define <. The result of
abs (z) where z isacomplex isacompiletime error. For reasons like this, it is possible to define tem-
plate specializations, which work for specific types:

double abs (complex z)

{

}

This specidization will be caled if abs is applied to a complex argument and the template will be used
for other argument types.

With even this little bit of knowledge, it is possible to begin to see how things like £ind if can be
made to work. Consider, for example the following implementation:

return sqrt (pow(re(z),2)+pow(im(z),2)) ;

template<class I, class P> I find if (I begin, I end, P pred)

{
while (begin!=end && !pred(*begin)) ++begin;
return begin;

}

This template function says little about the specific types I (for iterator) and P (for predicate); in conse-
guence, the function can be used on quite a variety of types.
For example, consider a built-in array:

void k()

{

int af[100];

int* p = find if(&a[0], &a[100], bigger1000) ;

}

Here, bigger1000 is our function from 84.1 that tests if its argument is greater than 1000. The types T
and P are ‘‘pointer to int’’ and *‘pointer to function taking int and returning bool,” respectively, soin
this particular context we could have written £ind_if thisway:

-14-

int* find if (int* begin, int* end, bool (*pred) (int))

{
while (begin!=end && !pred(*begin)) ++begin;
return begin;

}

Thisisjust aC program; it does alinear search of the elements of an array in the obvious way.
Now let uslook at how weused £ind if inh () whereit was used on squares and squares was
alist<ints>:

find if (squares.begin(), squares.end(), bind2nd(greater<int>(), 1000))

Heretype I isthetypeof squares.begin (). Wedon't actually know what that type s, but its name is
list<int>::iterator. All we know beyond its name is that it denotes an element of type int
somehow. We could think of an iterator as a simple pointer to int, though for alist asimple int* is
an unlikely candidate for an iterator type.

Ouruseof £ind_ 1if istherefore equivalent to what we would have if we wroteit this way:

typedef typename list<int>::iterator I;

I find if (I begin, I end, bool (*pred) (int))

{
while (begin!=end && !pred(*begin)) ++begin;
return begin;

}

We still don’t know what this does. We have, however, reduced the problem of understanding it to a previ-
ously unsolved problem, namely understanding how 1ist<int>::iterator works. Moreover, if we
know that we want this function to do a linear search, we can infer from that the behavior that
list<ints>::iterator must have.

Most fundamental are the factsthat beginisalist<int>::iterator and we pass begin asan
argument and return it asaresult. That means it must support copying. Moreover, comparing begin with
end requiresthat 1ist<int>: :iterator must support comparison and, presumably, that the compari-
son must yield some sensible result. Finally, because we use *begin and ++begin, those operations too
must do the right things, whatever those are. If we makethe 1ist<ints>::iterator type do al those
things, £ind 1if will work.

4.3.1 Iterator Categories

The standard C++ library defineswhat ‘*all thosethings'’ are. More specifically, it defines five iterator cat-
egories and says what it takes for a type to be a member of each of them. It then says, for the library func-
tions that accept iterators, what category of iterator each oneis expected to be.

The simplest kind of iterator is called an input iterator; it does just enough to allow a sequential data
structure to be read but not written. Thus, if p isan object of aninput iterator type, *p and ++p do sensible
things, but --p might not. You can find the forma definition in the draft ANSI/ISO C++ standard
[Koenig,1995] or in [Stepanov,1994].

There are also output iterators, which allow a sequential data structure to be written but not read. The
difference between an input and an output iterator is that if p is an output iterator, *p may only be written
but not read.

If asingle object can serve both as an input and an output iterator, we call it a forward iterator. A for-
ward iterator that also supports the decrement operator, - -, iscalled abidirectional iterator. Finally, abidi-
rectional iterator that also supports subscripting and other operations analogous to pointer arithmetic is
called arandom accessiterator. This can be represented graphicaly:

-15-

Iterator categories:

Input
Forward <=— Bidirectional <=— RandomAccess
Output

their operations.

++ * = == I= - (]

This iterator nomenclature is not part of the C++ language. Instead, it is part of the standard library docu-
mentation. Thus, for example, the description of £ind if states that the first two arguments must be
input iterators that delimit arange of values.

C++ templates do not reguire the author of functions like £ind_if to declare explicitly that its argu-
ments should be input iterators. In fact, there is no explicit way to declare such things even if the author
wanted to. We have heard numerous suggestions that C++ should make it possible to write find_if ina
style similar to the following:

template<class I: input iterator, class P: predicate>
I find if(I begin, I end, P pred)

{
}

Why does C++ offer no such facility? There are three main reasons:

[1] Any such facility would have to take into account not only inheritance but also built-in types and
operations on types not defined as members (such as the ‘*helper functions” in 83.2 and §3.3).
Ordinary pointers meet the requirements for random-access iterators when they are used to point to
elements of (built-in) arrays. That means we would need some way of saying that for any type T,
T* isarandom-accessiterator. Otherwise, we would have to forego the ability to use functions like
find_ if onbuilt-inarrays.

[2] The facility would offer little additional safety, if any. The main benefit would be that errors would
be detected when a template function, suchas find_1if, iscalled instead of when code is generated
for it; we believe that this benefit alone is not enough to justify awhole new type-checking facility.

[3] Even if such a facility existed and checked usage completely at the earliest possible instant, that
would still not guarantee safety. To work correctly, atemplate requires that its parameter type pro-
vide the expected operations with the expected semantics. Specifying ‘‘the expected operations’”
can be messy and constraining. Specifying ‘‘the expected semantics’’ can be surprisingly difficult.
For example, most attempts to specify something as simple as a less than operator, <, in general can
involve the programmer in the intricacies of the | EEE floating-point value NaN (not a number). We
prefer to leave such complexity in the documentation.

In general, we know of no way of expressing constraints on template parameters that wouldn’t be either too
cumbersome or too constraining [Stroustrup,1994,815.4]. Instead, C++ provides mechanisms for providing
separate implementations, called specializations, for specia cases. For example, in addition to providing a
genera 1ist template, one can provide versions to be used for lists of pointers (in general), and for lists of
void* (in particular).

/] ...

4.4 Strategy, Style, and Interface Conversion
Usersrely on library code. Conversely, libraries often have to rely on user code for critical operations done
to user data. Examples are copy operations for objects passed to a container, compare functions passed to a
sort routine, and a user-defined class overriding avirtual draw function in agraphics class.

Over the years, it has become obvious that techniques making such dependencies rely less on specific
names and interface styles significantly increases the flexibility and usefulness of libraries. The template
mechanism has played a key role in such tayloring of interfaces.

-16 -

4.4.1 Minimizing Run-time Resolution

Flexibility is often achieved by postponing decisions until run time. Sometimes, that is just right, but at
other times the convenience is bought at a cost in speed and safety. Consider the well known C (and C++)
standard library function print£ ():

#include <stdio.h>

main ()

{
}

Here, printf () determines the type of its second argument at run time. In general, it has to, because its
first argument, the format string, might be avariable. In most cases, static type checking of printf () is
possible. However, from an implementer’s viewpoint, it is easier to put this kind of run-time type checking
into the print £ library function than into the compiler.

The C++ equivalent,

printf ("$s", "Hello world\n");

#include <iostream.h>

main ()

{

}

does not rely on run-time typing. Instead, the types of cout and of the the string literal are used to select
during compilation the appropriate version of the << operator to use. This means that there is no run-time
overhead involved in finding the right kind of output conversion to use and no possibility that the wrong
choice will cause a crash.

The cooperation between the user and the library is established through the convention that the << oper-
ator isused for output. If alibrary or a user needs to support output of a new type, anew << is provided.

cout << "Hello world\n";

4.4.2 Templatesfor Interface Conversion
Sometimes conventions clash. For example, there may be one well-established convention for 1/O and
another for container interfaces. Consequently, it can be useful for library routines not to rely directly on
the interfaces of the objects they use. Instead they rely on auxiliary objects that express the mapping
between the expectation of library code and the user code interfaces. For example, the algorithms in the
STL library doesn’t use containers directly. Instead they access their input and output through iterators.

This strategy makes it possible to write iterator classes whose sole purpose is to impose a particular
interface on objects of some class that aready exists. For example, many popular algorithms read their
input one element at a time from a source. It makes perfect sense to let those algorithms get their input
from an input stream. In fact, anything else requires clumsy workarounds. Consequently, the standard C++
library offers atemplate class called istream iterator. Each object of that class obeys the rules for
input iterators, but such objects do not iterate over a data structure in the ordinary sense. Instead, an
istream iterator yields, inturn, each of the data values in a particular input stream, read according
to the usual rulesfor the >> operator.

For example, suppose we say

input iterator<strings> ins(cin);

Then ins isan object that on request will read stringsfrom cin, sothat if s isastring,
S = *ins++;

has the same effect as
cin >> s;

The STL model requires that we iterate from somewhere to somewhere. Consequently, we need a value
indicating ‘‘end of file'’ that we can compare the iterator ins to. Such avaue is used by default for an
uninitislized input_iterator<strings, o that we can say something like this:

-17 -

input iterator<strings> ins(cin);
input iterator<strings> eof;

void f£1()
{
while (ins != eof) {
s = *ins++;
//
}

}

and the loop will be executed once for each st ring in the standard input file.
Thisisequivaent to:

void £2()

{

while (cin >> s) {

//
}
}

However, defining input iterator makes it possible for the agorithm library to use the input/output
stream library unmodified. For example we can read al the strings in the standard input into a
vector<strings> without writing an explicit loop. Instead, we can create the vector directly from the
standard input:

vector<strings> vs(ins, eof);

Here, vs is constructed with two arguments, both iterators; doing that causes vs to be initialized with a
copy of the elements in the range delimited by those iterators. In this case, that range is the entire contents
of the standard input file.

Along similar lines, we can create an output iterator attached to the standard output file:

ostream iterator<strings outs(cout, "\n");

Here, the second argument to the ostream iterator constructor is a string that will be written after
each use of the ostream iterator. Thus, for example

*outs++ = "Hello world";

will print Hello world followed by a newline character.
With these iterators, we can read all the strings in the standard input and print them on the standard out-
put this way:

void gl ()

{

vector<strings vs(ins, eof);
copy (vs.start (), vs.end(), outs);

}
We can even write
void g2 ()

{
}

which would write each string as soon asiit read it.

However, reading the entire input before producing output makes it possible to do interesting things
before printing, such as sorting the elements. For example, this complete program (except for including
header files) sorts standard input onto its standard output:

copy (ins, eof, outs);

-18-

int main()

{

istream iterator<string> ins(cin), eof;
ostream iterator<strings> outs(cout, "\n");

vector<strings vs(ins, eof);
sort (vs.begin(), vs.end()) ;
copy (vs.begin(), vs.end(), outs);

return cout && cin; // use state of streams as result

}

Of course, C++ provides aform of run-time polymorphism aswell, which is the subject of the next section.

5 Design of Class Hierarchies

From Simula, C++ borrowed the concept of a class as a user-defined type and the concept of class hierar-
chies. In addition, C++ borrowed the idea for system design that classes should be used to model concepts
in the programmer’ s and the application’s world. This is often called object-oriented design and is the key
to effective use of classes. Language constructs directly support these design notions; the application of
design concepts is what distinguishes effective use of C++ from simpler uses of the language constructs as
notational props for more traditional types of programming.

A concept doesn't exist in isolation. For example, try to explain what a car is. Soon you'll have intro-
duced the notions of wheels, engines, drivers, pedestrians, trucks, ambulances, roads, oil, speeding tickets,
motels, etc. Consequently, when we try to map concepts into classes, we soon find the need to expressrela-
tionships between classes. However, we can't express arbitrary relationships directly, and even if we could
we wouldn’t want to. Our classes should be more narrowly defined than our everyday concepts, and more
precise. Languages that borrow from Simula are particularly adept at expressing hierarchical relationships
between classes.

5.1 ClassHierarchies

Consider a simple design problem: Provide a way for a program to get an integer value from a graphical
user interface. This can be done in a bewildering number of ways. To insulate our program from this vari-
ety, and aso to get a chance to explore the possible design choices, let us start by defining our program’s
model of this simple input operation. We will leave the details of implementing it using a rea user-
interface system for later.

Theideaisto haveaclass ival box that knows what range of input valuesit will accept. A program
can ask an ival box for its value, and ask it to prompt the user if necessary. In addition, a program can
ask anival box if auser has changed the value since the last operation initiated by the program.

Because there are many ways of implementing this basic idea, we must assume that there will be many
different kinds of ival boxes, such as sliders, plain boxes where a user can type a number, dias, voice
interaction, and so on.

5.2 A Traditional ClassHierarchy

Our first solution will be atraditional class hierarchy as commonly found in Simula or Smalltalk programs.
Class ival box definesthe basicinterfaceto all ival boxesand specifies a default implementation

that more specific kinds of ival boxes can override with their own versions. In addition, we declare the

data needed to implement the basic notion.

-19-

class ival box ({
protected:
int val;
int low, high;
bool changed;
public:
ival box(int 11, int hh)
{ changed = false; low=1l; high=hh; val = 11; }
virtual int get value()
{ changed = false; return val; }
virtual void set value (int 1)
{ changed = false; val = i; }
virtual void prompt ()

{}

virtual bool was_ changed() const
{ return changed; }

bi

The default implementation of the functions is pretty sloppy and provided here primarily to illustrate the
intended semantics. A realistic class would, for example, provide some range checking.
Given this basic definition of ival box, we can derive variants of the concept from it. For example:

class ival slider : public ival box {
// graphics stuff to define what the slider looks like, etc.

public:
ival slider(int, int);

int get_value() ;
void prompt () ;
bool was changed() ;
}i
A classlike ival slider is said to be derived from class ival box and ival box is said to be a
base of ival slider. Alternatively, we can cal ival box the superclass of ival slider and
ival slider asubclassof ival box. The notation

class ival slider : public ival box { /* ... */ };

defines ival slider to be a subtype of ival box. In other words, we can manipulate an
ival slider aswewould anival box; they sharetheinterface defined by ival box.

Further, a virtual function in a base class, say ival box: :prompt (), can be overridden by
defining a function with the same name and the same argument types in a derived class, say
ival slider::prompt (). That done, a cal of prompt () on an object of the derived class will
invoke ‘‘theright’” function, even if the variable used to refer to the ival slider isaplain pointer to
ival box. For example:

void £ ()

{

ival box* p = new ival slider(10,700);
p->prompt () ;
}
Here, the initialization of p is legal because ival slider isasubtype of ival box, and the call of
prompt () will invoke ival slider: :prompt () because prompt () isavirtua function overrid-
deninival slider.

Getting ‘‘the right’” behavior from ival box’s functions independently of the exact kind of
ival box actually used is caled polymorphism. A type with virtual functions is called a polymorphic
type. To get polymorphic behavior in C++, objects must be manipulated through pointers or references.
The reason for this is that when manipulating an object directly, its type is always known during compila
tion so that run-time polymorphism is not needed.

The new operator creates an object of a given type on the free store, initializesit by an invocation of the

-20-

appropriate constructor, and returns a pointer to the resulting object .

A derived class constructor need not take the same set of arguments as its base class. Typicaly a
derived class has its own distinct requirements for arguments relating to its particular variant of the idea
represented by the base class. However, to simplify the discussion here, we will define al of our construc-
tors to take two intsbounding the desired range.

The data members of ival box were declared protected to allow access from derived classes.
Thus, ival slider::get_value () can deposit a value in ival box::val. A protected
member is accessible from aclass own members and members of derived classes, but not to general users.

In addition to ival slider, we would define other variants of the ival box concept such as
ival dial where you select avalue by turning aknob, flashing ival slider that flashes when
you ask it to prompt (), and popup ival slider that respondsto prompt () by appearing in some
prominent place whereit is hard for the user to ignore.

A programmer might use these**ival classes’ likethis:

void interact (ival box* pb)

{

pb->prompt () ; // alert user
//
int i = pb->get value();
if (pb->was_changed()) {
// new value; do something
}
else {
// old value was fine; do something else
}
//

}

void some fct ()

{
ival box* pl = new ival slider(0,5);
//
interact (pl) ;
ival box* p2 = new ival dial(1,12);
//

interact (p2) ;

}

Note that most application code is written in terms of (pointers to) plain ival boxes the way
interact () is. That way, the application doesn’'t have to know about the potentialy large number of
variants of the ival box concept. The knowledge of such specialized classesis isolated in the relatively
few functions that create such objects. This isolates users from changes in the implementations of the
derived classes and most code can be oblivious to the fact that there are different kinds of ival boxes.

Where would we get the graphics stuff from? Most user-interface systems provide a class defining the
basic properties of being an entity on the screen, so if we use the system from **Big Bucks Inc.”” we would
have to make each of our ival slider, ival dial, etc., classes a kind of BBwindow class. This
would most simply be achieved by rewriting our ival box so that it derives from BBwindow. That
way, all our classes inherit all the properties of a BBwindow. For example, every ival box can be
placed on the screen, obey the graphical style rules, be resized, be dragged around, etc., according to the
standard set by the BBwindow system. Our class hierarchy would look like this:

class ival box : public BBwindow { /* ... */ }; // rewritten
class ival slider : public ival box { /* ... */ };
class ival dial : public ival box { /* ... */ };

class flashing ival slider : public ival slider { /* ... */ };

-21-

class popup_ival slider : public ival slider { /* ... */ };
or graphically using obvious abbreviations:

BBwindow

i

ibox
islider idial
ipopup iflash

5.2.1 Critique
This design works well in many ways, and for many problems this kind of hierarchy is a good solution.
However, there are some awkward details that could lead usto look for alternative designs.

We retrofitted BBwindow as the base of ival box. Thisis not quite right. The use of BBwindow
wasn’t part of our basic notion of an ival box; it was an implementation detail. Deriving ival box
from BBwindow elevated an implementation detail to afirst-level design decision. That can be right, say
when working in the environment defined by ‘*Big Bucks Inc.”” is akey decision of how our organization
conducts its business. However, what if we also wanted to have implementations of our ival boxesfor
systems from *‘Imperial Bananas,”’ ‘‘Liberated Software,”’ and ‘* Compiler Wizzes?’ This would require
us to write and maintain four distinct versions of our program:

// BB version:

class ivalue box : public BBwindow { /* ... */ };
// CW version:

class ivalue box : public CWwindow { /* ... */ };
// IB version:

class ivalue box : public IBwindow { /* ... */ };
// LS version:

class ivalue box : public LSwindow { /* ... */ };

This could become a version-control nightmare.

Another problem is that every derived class shares the basic data declared in ival box. That datais,
of course, an implementation detail that crept into our ival box interface also. From apractical point of
view, it is also the wrong data in many cases. For example, an ival slider doesn’t need the value
stored specifically. It can easily be calculated from the position of the slider when someone executes
get_value (). Ingeneral, keeping two related, but different, sets of datais asking for trouble. Sooner or
later someone will get them out of sync. Also, experience shows that novice programmers tend to mess
with protected data in ways that are unnecessary and cause maintenance problems. Data are better kept pri-
vate so that writers of derived classes cannot mess with them. Better still, data should be in the derived
classes where they can be defined to match requirements exactly and cannot complicate the life of unrelated
derived classes. In almost all cases, a protected interface should contain functions, types and constants
only.

Deriving from BBwindow gave the benefit of making the facilities provided by BBwindow available
tousersof ival box. Unfortunately, it also means that changes to class BBwindow may force users to
recompile or even rewrite their code to recover from such changes. In particular, the way most C++ imple-
mentations work implies that a change in the size of a base class requires a recompilation of all derived
classes.

-22-

Finally, our program may have to run in a mixed environment where windows of different user-
interface systems coexist. This could happen either because two systems somehow share a screen, or
because our program needs to communicate with users on different systems. Having our user-interface sys-
tems ‘‘wired in”’ as the one and only base of our one and only ival box interface just isn't flexible
enough to handle that.

5.3 Abstract Classes
So, let’s start again and build a new class hierarchy that solves the problems presented in the critique of the
traditional hierarchy. That is:
[1] The user-interface system should be an implementation detail that is hidden from users who don’t
want to know about it.
[2] The ival box classshould contain no data.
[3] No re-compilation of code using the ival box family of classes should be required after a change
of the user-interface system.
[4] ival boxesfor different interface systems should be able to coexist in our program.
Severa alternative approaches can achieve this. We will present one that maps cleanly into the C++ lan-
guage.
First we specify class ival box asapureinterface:

class ival box ({

public:
virtual int get_value() = 0;
virtual void set value(int i) = 0;
virtual void prompt () = 0;
virtual bool was changed() const = 0;

virtual ~ival box() { }

Vi

Thisis much cleaner that the original declaration of ival box. The dataisgone, and so are the simplistic
implementations of the member functions. Gone too isthe constructor, because there is no datafor it to ini-
tialize.

Instead, two things have been added. We will describe the role of the function called ~ival box (),
the destructor, below. The curious =0 syntax says that a function is a pure virtual function. A class with
one or more pure virtual functionsis called an abstract class. Because objects of abstract classes cannot be
created, pure virtual functions need not be defined. Only objects of non-abstract derived classes can be cre-
ated; those classes must define all the pure virtual functions they inherit. For example, if we assume that
ival slider isderived fromival box and definesall the purevirtuals:

void £()

{
ival_box bl; // error: abstract class
ival box* pl = new ival box; // error: abstract class
ival slider b2; // ok
ival box* p2 = new ival slider; // ok

}
The definition of ival slider might look likethis:
class ival slider : public ival box, protected BBwindow {

// data needed for slider

protected:
// functions overriding BBwindow virtual functions
// e.g. BBwindow: :draw(), BBwindow::mouselhit ()

-23-

public:
ival slider(int,int);
~ival_slider () ;

int get value() ;

void set value(int 1i);
void prompt () ;

bool was_changed() const;

bi

Interestingly, this declaration allows application code to be written exactly as in the interact () and
some_fct () example above. All we have done is to restructure the implementation details in a more
logical way.

The virtua function ival box::~ival box() and its overiding function
ival slider::~ival slider () aredestructors, that is, functionsthat areimplicitly called when an
object is destroyed (goes out of scope, is explicitly deleted, etc.). Many classes require some form of
cleanup for an object before it goes away. Since the abstract class ival box cannot know if a derived
class requires such cleanup, it must assume that it does. Defining a virtual destructor in the base ensures
proper cleanup. For example:

void f (ival box* p)

{
/] ...

delete p;

}
The delete operator explicitly destroys the object pointed to by p. We have no way of knowing exactly
which class the object pointed to by p belongs to, but thanks to ival box’s virtual destructor, proper
cleanup as (optionally) defined by that class' destructor will be called.

The ival box hierarchy can now be defined like this:

class ival box { /* ... */ };

class ival slider : public ival box, protected BBwindow { /* ... */ };
class ival dial : public ival box, protected BBwindow { /* ... */ };
class flashing ival slider : public ival slider { /* ... */ };

class popup_ival slider : public ival slider { /* ... */ };

or graphically using obvious abbreviations:

BBwindow ibox BBwindow

N .
~ -
~ -

~
iglider idial

ipopup iflash

Each derived class inherits an abstract class (for example, ival box) requiring it to implement the base
class pure virtual functions, and a BBwindow provides them with the means of doing so. Since
ival box provides the interface for the derived class, it is publicly derived using :public. Since
BBwindow isonly an implementation aid, it is derived using : protected. Thisimpliesthat a program-
mer using, say ival slider, cannot directly use facilities defined by BBwindow; only the interface
inherited by ival box and possibly augmented by ival slider isavailable.

Deriving directly from more than one class is usualy caled multiple inheritance. Note that
ival_slider must override functions from both ival box and BBwindow S0 it must be defined by
deriving it directly or indirectly from both. As shown in 8§4.2, deriving ival slider indirectly from
BBwindow by making BBwindow abaseof ival box ispossible, but has undesirable side effects.

-24-

This design is cleaner and more easily maintainable than the traditional one—and no less efficient. It
till failsto solve the version control problem, though:

// common:
class ival box { /* ... */ };
// BB version:

class ival_slider : public ival_box, protected BBwindow

{ /* .. *x/ };
// CW version:

class ival_slider : public ival_box, protected CWwindow

{ /* ... %/ };
//

In addition, there is no way of having an ival slider for BBwindows coexist withan ival slider
for cwwindows even if the two user-interface systems can themsel ves coexist.
The obvious solution is to define several different ival slider classeswith separate names:

class ival box { /* ... */ };
class BB_ival slider : public ival box, protected BBwindow { /* ... */ };
class CW_ival slider : public ival box, protected CWwindow { /* ... */ };
//
or graphicaly:
BBwindow ibox CWwindow
BBislider CWislider

To further insulate our application-oriented ival box classes from implementation details, we can go one
step further and first derive an abstract ival slider classfrom ival box and then derive the system
specific ival sliders from that:

class ival box { /* ... */ };
class ival slider : public ival box { /* ... */ };
class BB_ival slider : public ival slider, protected BBwindow { /* ... */ };
class CW_ival slider : public ival slider, protected CWwindow { /* ... %/ };
//
or graphically:
ibox
BBwindow islider CWwindow
BBislider CWislider

Usually, we can do better yet by utilizing more specific classes in the implementation hierarchy. For exam-
ple, if the Big Bucks Inc. system has a slider class, we can derive our ival slider directly from the
BBslider:

-25-

class BB ival slider : public ival slider, protected BBslider { /* ... %/ };
class CW_ival slider : public ival slider, protected CWslider { /* ... */ };
or graphically:
ibox
BBglider igslider CWslider
\ L
BBislider CWislider

This improvement becomes significant where—as is not uncommon—our abstractions are not too different
from the ones provided by the system used for implementation. In that case, programming reduces to map-
ping between similar concepts. Derivation from general base classes, such as BB_window, is then done
only rarely.

The complete hierarchy will consist of our original application-oriented conceptua hierarchy of inter-
faces expressed as derived classes:

class ival box { /* ... */ };

class ival slider : public ival box { /* ... */ };

class ival dial : public ival box { /* ... */ };

class flashing ival slider : public ival slider { /* ... */ };
class popup ival slider : public ival slider { /* ... */ };

followed by the implementations of this hierarchy for various windows systems expressed as derived
classes:

// BB implementations:

class BB_ival_slider
public ival slider, protected BBslider { /* ... */ };

class BB_ival dial : public ival box, protected BBdial { /* ... */ };
class BB_flashing_ival_slider
public ival_slider,

private BBwindow with bells and whistles { /* ... */ };

class BB_popup_ival_slider
public ival slider, protected BBslider { /* ... */ };

// CW implementations:

class CW_ival_slider
public ival slider, protected CWslider { /* ... */ };

class CW_ival dial : public ival dial, protected CWknob { /* ... */ };
//

//
or graphicaly:

-26-

ibo

islider/ idial

ipopup iflash

BBslider CWsl CWsl BBdial

A A N
/ \
| // \\

BBislider BBipop CWipop CWifl BBifl CWislider BBidial Cwidial

BBslider

A

CWknob

Note how the original ibox class hierarchy appears unchanged, but is surrounded by implementation
classes.

5.3.1 Critique
The abstract class design is flexible, and amost as simple to deal with as the equivalent design relying on a
common base defining the user-interface system. In the latter design, the windows class is the root of a
tree. In the former, the origina application class hierarchy appears unchanged as the root of classes that
supply its implementations. In either case, you can look at the ival box family of classes without both-
ering with the window-related implementation details most of the time.

In either case, the complete implementation of each ival box class must be rewritten when the public
interface of the user-interface system changes. However, in the abstract class design almost al user codeis
protected against changes to the implementation hierarchy and require no recompilation.

5.4 Localizing Object Creation
The flexibility of the abstract class design causes one problem, though. Most of an application can be writ-
ten using the ival box interface. Further, should the derived interfaces evolve to provide more facilities
than plain ival box, then most of an application can be written using the ival box, ival slider,
etc., interfaces. However, the creation of objects must be done using implementation-specific names such
as CW_ival dial and BB flashing ival slider. We would like to minimize the number of
places such specific names occur, and object creation is hard to localize unless you do it systematically.

As usual, the solution is to introduce an indirection. This can be done in many ways, but here is a sim-
ple one:

class ival box maker {
public:
virtual ival slider* ival slider(int, int) =0;
virtual ival dial* ival dial(int, int) =0;
virtual popup ival slider* popup ival slider(int, int) =0;
//
bi

For each interface from the ival box family of classes a user should know about, class
ival box maker provides a function making an object. We now represent each user-interface system
by aclassderived from ival box maker:

-27 -

class BB maker : public ival box maker ({
public:
ival_slider* ival_slider(int, int);
ival dial* ival dial(int, int);
popup_ival slider* popup ival slider (int, int);
//
Vi

class LS maker : public ival box maker {
public:
ival slider* ival slider (int, int);
ival dial* ival dial(int, int);
popup_ival slider* popup ival slider (int, int);
//
}i

Each function ssimply creates an object of the desired interface and implementation type. For example:

ival_slider* BB_maker::ival_slider (int a, int b)

{
}

Given a pointer to a ival maker, a user can now create objects without having to know exactly which
user-interface system isused. For example:

return new BB ival slider(a,b);

void f(ival maker* pim)

{
//
ival box = pim->ival slider(-99,99);
// instead of new BB val slider(-99,99);
// or new LS val slider(-99,99);
// or ...
//
}

BB ival maker BBim;
LS _ival maker LSim;

void g()

{

f(&BBim); // let £ use BB
f(&LSim); // let f use LS

}
Thistechnique appears in [Gamma,1994] as the abstract factory pattern.

6 C++Style

C++ is often inaccurately described as an object-oriented language, and (therefore?) often criticized for not
fulfilling everybody’ s fantasies of what an object-oriented language ought to be.

If we have to stick a pretentious-sounding label on C++ it must be: C++ is a multi-paradigm language.
It supports several styles of programming and combinations of those styles. The traditional summary is
[Stroustrup,1994]:

C++ isagenera-purpose programming language that
— isabetter C
— supports data abstraction
— supports object-oriented programming

However, the exact scope of this isn't easy to pin down to a simple slogan such as ‘‘Everything is an
Object!”” or ‘“‘No side effects!’”” Such slogans are certainly not among the ideals of C++ even though

-28-

support for both object-oriented programming and functional styles of programming is.

Good Ct++ styleis pragmatic, has evolved from the Simulaideas of object-oriented design as modelling,
places a premium on direct expression of ideas, shares much of C’'s concern for low-level efficiency, and is
aimed at solving current everyday problems.

Naturally, thisis just our view. Nothing is universally held in a community as large as the C++ user
community, but our view is directly reflected in the design of C++ [Stroustrup,1994,84]. Fortunately for
people who hold other views, one of our strongest held opinions is exactly that C++ should support a vari-
ety of styles. Thus, even though we don't try to provide direct support for every style of programming in
C++, we don’t go out of our way to prevent styles we don't like, either. Indeed, it is often a source of
enjoyment to see people using C++ in ways we did not anticipate—especially when it is successful.

Unfortunately—or maybe fortunately—style is hard to define and must be taught (and learned!) with
liberal use of examples. We have presented three areas where C++ provides direct support, where a definite
view of design can guide the programmer, and where the design views and resulting coding style reflects
experience with C++. The examples were chosen to demonstrate areas that are not universally well-covered
by modern programming languages and where current practice—in Ct++ and other languages—often
diverges from our ideal. Thus the examples from 83, 84, and 85 can serve as discriminating cases and pos-
sibly asinspiration to do as well or better.

Clearly, by *‘style’’ we just don't mean rules for indentation of code, the naming of variables, and the
banning of unfashionable language features. Good programs are the result of a focus on concepts and
sound notions of design, rather than mechanistic language-technical issues. Such issues matter, but at a
much more detailed level.

C++ supports enough data abstraction to make it possible to program at as high alevel asin many more
‘“*advanced’’ languages. Doing so usually requires extensive work designing, implementing and tuning a
library supporting the style. Building such a framework should not be everyday work for most C++ pro-
grammers. For example, the STL wasn’t easy to design (Alex Stepanov and his colleagues worked on the
basic ideas for over a decade), was somewhat easier to implement (the current version was about two years
of work for two people), and it is quite simple to teach and use.

Thisis akey idea: first arelatively small group of people develops a library supporting an application
domain well. After that, many more people can use the library to develop applications or the next level of
library. We are not making a value judgement about programmers here. It easier to use a well-designed
library than it is to design and implement it, and the subset of C++ needed to produce a complete, efficient,
and elegant library is far larger than what is needed to use it. This has led some people to propose a class
system of programmers with the best programmers focused on library development and the worst restricted
to application development.

However, the demands on a programmer’s skills are a function of both the inherent difficulty of the
application and the quality of tools available for its development. Therefore, one cannot blindly assume
that lesser skills or fewer language features are needed for application development. Sometimes, things
seem the other way around with the library developers benefitting from a relatively limited and well-
defined problem domain, and the application developers suffering from being lost in an overly large and
complicated design space. From this observation comes the notion that the best way to make progress on a
large system is to focus on the development of several libraries or frameworks and then build the system
incrementally from those.

The unit of design is not the individual class—in C++ or in any other language. It is a set of classes
related by some logical criteria [Stroustrup,1991812.11.3.3]. For example, the power of the STL comes
from the unifying criteria for what constitutes a container, an iterator, etc. Similarly, the discussion of
design issues relating to the input operation in 85 would have been impossible had we tried to consider the
problem one isolated class at atime.

Another key observation is that not every classis supposed to be used in the same way or obey the same
simple-minded design criteria. Often, simplified design rules of thumb are advertised as universal princi-
ples and a curious form of reductionism takes the place of calm thinking. Thus, we find people arguing that
because some classes are best designed as part of a hierarchy, every class must be designed to be part of a
class hierarchy; that because it makes sense for some functions to be virtual, every function must be
virtual; and that because some interfaces are best described as abstract classes, no class presented to a
users may contain data.

-29-

Thiskind of purely language-driven thinking makes no sense to us. We must focus on the concepts in
the application and map them into the language constructs in the most appropriate way. In other words, we
must design first and keep our programming-language-technical concerns secondary. On the other hand,
we don’t consider totally language-independent design practical. The design must map into the language
used for its implementation in a way that suits the fundamental structure of the language. In particular, a
design for a C++ program that tries to subvert C++'s static type system will be ugly, unpleasant to imple-
ment, and hard to maintain. Against the fundamental structure of alanguage—any language—one can win
Pyrrhic victories only.

Oneimplication of thisis that major interfaces are usually best defined in terms of specific user-defined
types and that a class should provide an interface that match a single coherent concept. This alows better
type checking, and wherever possible static (compile time) checking should be used to minimize confusion,
run-time errors, and the need for run-time checking of arguments passed across an interface. The Date
constructor can be used to illustrate some tradeoffs:

Date::Date(int d, Month m, int y);

Month is a user-defined type (an enumeration), so we can’t get much confusion from that. People reading
the declaration know what is expected; should they nevertheless mess up, the compiler catches the problem:

Date d1(1978,2,21); // error: 2 is not a Month
Date d2(1978,Date::feb,21); // ok

However, we reversed the year and the day. The Date constructor’s check of the range of dates in Febru-
ary will catch that at run-time.

Had Date been critical in our design, we might have introduced a Day or a Year type to alow
stronger compile-time checking. For example:

class Year ({

int y;

public:
explicit Year(int i) { y = 1i; } // construct Year from int
operator int () const { return y; } // conversion: Year to int

bi

class Date ({
Date (int d, Month m, Year y);

// ...
}i
Date d3 (1978, feb,21) ; // error: 21 is not a Year
Date d4 (21, feb,Year(1978)); // ok

The Year class is a simple ‘‘wrapper’’ around an int. Thanks to the operator int () a Year is
implicitly converted into an int wherever needed. Thanks to the explicit constructor, an int can be
explicitly (only) converted into a Year. Because Year's member functions are easily inlined, no run-time
or space costs are added. Thisreflectsthe rule for the design of C++ that to be useful, afacility mustn't just
be elegant: it must aso be affordable in real programs. We don’t have any strong rules for where such
added compile time checking is worth the added effort from the programmer. If necessary, such a simple
wrapper class can contain additional run-time checks.

Letting a class represent a single coherent concept (only) tends to lead designs away from hierarchies
based on very general base classes. Thisis good because over time such base classes tend to acquire data
and functions to the point where they become a burden. The classic example is a base class for a container
hierarchy. Such a class tends to provide a superset of the operations needed for individual containers. It
may, for example, provide operations for indexing, list operations, size adjustments, access to associative
data structures, etc. Because not every specific container can implement every operation on the ‘‘fat’’ con-
tainer interface, inefficiencies, run-time checking, and bugs result; see also [Stroustrup.1991,813.6]. A
clean C++ program tends to be aforest of classes rather than asingle large tree.

Naturally, many C++ designs violate one or more of our suggested rules. This is partly because not
everybody agrees about these design rules, and partly because of inexperience about design in the C++

-30-

community. There may very well be more good designers in the C++ community than in any other pro-
gramming community, but there certainly are more novices. The rapid growth of C++ usage ensures that.
We can teach design to small groups, and even to larger organizations. However, getting design technique
applied on alarge scale (hundreds or thousands of programmers) is atask no language community has been
spectacularly successful at—yet.

7 Sociological Observations

A programming language by itself is useless. Unless supported by tools, techniques, and a user commu-
nity, alanguage is simply an intellectual plaything. Thereis a need for experimental languages, niche lan-
guages, languages devoted to the pursuit of beauty without compromise. However, C++ was never meant
to be one of thosg; it was designed and evolved to be a practica tool.

Like the success of C, the success of C++ was no accident. Naturally, a certain element of good fortune
was involved in both cases; nothing succeeds on a large scale without a bit of luck. However, alarge part
of that success came from an effort to make C++ the best language possible, rather than the best possible
language.

Throughout its evolution, C++ was heavily influenced by a desire to make it a useful tool to a commu-
nity of potential users who already existed, whose problems we knew reasonably well. Another important
aspect was restraint: C++ was not alowed to grow without solid feedback on what we already had, without
practical experience with problem areas (where what we had felt ‘*not good enough’’), and without con-
cerns for compatibility and transition issues. Theory was never a sufficient reason for adding something to
C++. Theory determines the form of what is added but not what is needed.

7.1 Thebest language possible

What is the best programming language? We have lost count of the number of times we have heard that
guestion asked and answered. Most of those questions and answers have little meaning because they focus
on language-technical issues to the exclusion of vitally important aspects of how a non-experimental pro-
gramming language is used: programming languages, like other tools, are useful only in context.

A context has several parts. For example:

[1] What problems, or kinds of problems, will the language be used to solve?

[2] What skills do the people have who might use the language? Which new skills are they able and

willing to acquire?

[3] What languages are available, or can be made available? What is the cost of making them avail-

able?

[4] How easy isit to obtain access to experts who can help answer the questions that inevitably arise?

[5] Areuseful libraries available?

[6] Isit necessary for programsto work with other programs that already exist?

[7] What are the performance constraints?

[8] Will it become necessary to run one’s programs on other machines? If not now, what about later?

[9] Will the investment in time and money on a language, its tools, and techniques for this project, pay

off by having the language, etc., useful for other projects?
Thislist is, of course, incomplete, but it gives an idea of what influences the choice of a programming lan-
guage for a production system.

Notice that the nature of the language itself is directly relevant to only the first, second, and last ques-
tionson thelist. The other questions pertain mostly to the available implementations and to the community
of users that surrounds the language(s) and implementations, the infrastructure of the language. This
implies that to be successful, a language must be designed with an eye to its likely implementations, the
communities of people who will be using it, and the purposes to which they will put it.

72 C++and C

C++ was originally intended for the same kinds of applications as C. Although C started out as a language
in which to write operating systems, it has since been used for awide variety of things that fall into the gen-
eral category of ‘‘system programming.”’ Such things often need to get at particular hardware facilities
through extralinguistic means. That implies that to remain useful for system programming, C++ must be
careful not to stray too far from the underlying machine (see §2).

-31-

Because C++ was intended to be useful in the same areas as C, one major goal of C++ has been to do
everything C can, and do it as efficiently in time and space as C. Consequently, if one writes a C program
in C++, that program will be as fast and small as it would have been in C. This is not true of every C++
implementation, of course, but attainable in theory, and often achieved in practice. C++ even made a few
improvements on C in areas not related to abstraction. Some of those improvements, such as const types
and the ability to include argument types as part of a function declaration, found their way back into C.
Others, such asinline function definitions, did not.

The desire to do everything C can do is a strong constraint on C++. For example, it has made it infeasi-
ble to make the primitive C++ array and pointer operations any safer than their C counterparts. It is possi-
ble, of course, to define safe data structures as C++ classes, but in practice few C++ programmers have the
discipline needed to use such data structures exclusively. Thus, C is both a great strength of C++ and a
great weakness.

That C++'s relationship with C wouldn’t be easy was clear from the start. We like aspects of C, but
some key elements of the C language and culture are most disruptive to people trying to write more abstract
programs and trying to reason about programs. For example, the C preprocessor is essential for real-world
C programming, but is also a menace: any piece of source text may turn out not to be what it appears to be
because a macro substitution may radically change what the programmer wrote before the compiler seesit.

The traditional academic response to such problems seems to be ‘*ban it!’”” The C++ answer has been:
first make the obnoxious feature redundant, then discourage its use; finally we may actually consider ban-
ning the now-unused feature. This strategy is Slow and often frustrating, but it respects people’s practical
needs in away a more radical approach doesn’t. C++ doesn’t yet have facilities that make the C preproces-
sor completely redundant, but inline functions, constants, namespaces, templates, etc., allow a programmer
to restrict the use of preprocessor facilities to aminimum related to source code management.

The policy regarding C/C++ compatibility has been expressed as: ‘‘As close to C as possible—but no
closer’’ [Koenig,1989]. In practice, this means that C++ accepts any C feature—however ugly—as long as
it does not interfere with the type system. This policy has kept incompatibilities to an easily manageable
minimum.

C is the de facto measure of efficiency. People generally accept that if something runs as fast as well-
written C it is fast enough. If it doesn’t, criticism results—fair or not. Since its inception, one of the aims
of C++ has been to make it possible to write programs that are not only abstract, but also run quickly.
Throughout the lifetime of C++, and well before it, people have argued that such emphasis on run-time per-
formance is unnecessary.

The typical argument runs something like this: ‘* Computers are so fast these days that we can afford to
give up some of that speed if by doing so we gain something in exchange.’”” That something might be
development time, or safety, or whatever the favorite language of the person making the argument has to
offer. Such arguments are often valid, but not always, and it is not easy to tell when they will be important
and when they will not.

For small programs—such as many student projects and prototypes—efficiency rarely matters. Larger
systems, however, often consists of many layers of software. If overhead is allowed to build up in the indi-
vidual layers, the total system becomes glacial. Naturaly, if the overhead in an individual layer is really
support for subsequent layers so that these layers become simpler and faster then this doesn’t happen.
Unfortunately, we have found this happy phenomenon less common than one might have hoped. In the
absence of such synergies, the language with the most efficient low-level semantics—that is, C or C++—
wins. Of course, when one is developing programs for one’s self or one's immediate circle, such issues are
less important. That is one of the ways in which C++ has been guided by the requirements of commercial,
rather than academic, users.

Finally, there are application areas where efficiency is paramount. If you are writing an operating sys-
tems kernel or a network driver you don't want any fat on your code—for any reason. For hard rea-time
applications you have the additional requirement that the performance of every feature must be absolutely
predictable as well as sufficiently fast. C++ meetsthe requirements here.

By being C-compatible, C++ was able to benefit from C’s libraries easily, directly, and without over-
heads. The benefits of that are inestimable because it gives the C++ programmer access to the largest col-
lection of new and old code available. 1t made the difference between early C++ being a toy and being a
tool. Inaddition to gaining accessto libraries written in C, link and layout compatibility with C allows C++

-32-

programsto call routines in languages with a C compatible calling sequence, such as Fortran and assembler
on many systems. Further, C++ functions can be called from such languages. This allowed Ct++ to be used
to write libraries for use from other languages from day one.

7.3 C++and Other Languages

We have seen other languages as afertile source of ideas. Programming languages are fun to play with and
it is hard to imagine a modern language—except purely commercial hacks—from which one cannot learn
something important.

One cannot simply graft a feature from one language on to another, however. The influence in more
subtle. In addition to the ‘‘parent languages’” C and Simula, we can see traces of Ada, Algol68, Clu, and
ML in C++. Many more languages, including Lisp, have inspired programming techniques.

Judging from the net, discussionsin the literature, remarks at conferences, etc., the relationship between
languages is supposed to be antagonistic and dominated by fierce commercial rivalries. This has left
few—if any—traces in the definition of C++, and ‘‘marketing strategy’’ never took significant amount of
time from the technical work on C++. The primary reason for thisis that in the early years (say until 1989),
Ct++ didn’t have any marketing. It grew as a completely disorganized grass-roots movement. The repeated
rumors that C++ succeeded because of *‘large corporation backing’’ are the products of overexcited imagi-
nations of would-be commercial competitors. Infact, AT& T spent the grand sum of $3000 on C++ adver-
tising in the critical 1985-1989 period. No one could serioudy attribute C++'s success to that. The other
theory, that C++ was first in the field of OO languages and thus established itself before any competition
arose, isequally at odds with facts. C++ became commercially available in October 1985. Ada, Smalltalk,
Objective C, and some Lisp dialects were commercially available well before that and even Eiffel was at
most half ayear behind.

In explaining C++'s success, we fall back on less interesting reasons: C++ was a reasonable language,
cheap, easy to port, fast, coexisted well with other languages, and relatively easy to learn.

C++ owes agood part of its success to the fact that it was able to build on the existing C community. In
our experience, the only alternative to building on an existing community is to pick a set of problems for
which no widely acceptable solution exists.

The first C++ compiler—and the only one for several years—compiled C++ into C instead of assembly
language or machine language. This allowed people to port C++ to a new computer in a matter of days
instead of months, provided only that the machine already had a C compiler. This guaranteed that C++
could be readily made available on any machine that supported C, which opened the entire C community as
potential C++ users. This approach has since become popular as a method of making new languages avail-
able[Stroustrup,199483.3].

The programming language one uses will be influenced in practice by the languages one’'s neighbors
use. Thisistrue of natura languages as well as programming languages, of course. English isthe world’s
most widespread second language. The reason is that lots of people speak it already, that there is a signifi-
cant English literature, that more technical information is available in English than in other languages, etc.
The facts that English (as actually used) doesn’t have a fixed grammar, that English spelling is an arcane
art, that idiomatic English is fiendishly difficult and varies from place to place and from time to time, that
English has more words than any other language, etc. don’'t seem to matter. The benefits of knowing
English make it worth more effort than most other languages. In addition, it is relatively easy to speak
English badly, and people accept poor English as long as it effectively conveys information. We believe
similar phenomena are occurring with C++.

7.4 LearningtouseC++
In two hours, it is possible to teach a C programmer enough C++ to make that programmer noticeably more
productive. In a week, it is possible to teach a C or Pascal programmer enough to be a functioning C++
programmer in the sense of being able to write code without looking in the manual al the time. It usually
takes six to eighteen months for a programmer to become genuinely comfortable with object-oriented
design to the point where the proper use of most C++ language features feels natural enough to be unnoticed
in the larger task of building software.

Exceptional programmers can do better yet. However, C++ wasn't designed for exceptiona program-
mers. You don't have to be a genius to be agood C++ programmer.

-33-

The estimate of the time needed to become comfortable with C++ and object-oriented design is based on
the assumption that the programmer/designer learns on the job and stays productive—usually by program-
ming in a ‘‘less adventurous’ style of C++ during that period. If one could devote full time to learning
C++, one would be comfortable faster. However, without application of the new ideas on real projects that
degree of comfort could be misleading. Object-oriented programming and object-oriented design are
practical—rather then theoretical—disciplines. Unapplied, or applied only to toy examples, these ideas can
become dangerous ‘‘religions.”’

The time-consuming thing to learn about C++ is not syntax, but design concepts. A good indication of
poor appreciation of C++ is code littered with casts (explicit type conversions). Often, the casts are the
result of someone writing C or trying to write Smalltalk in C++.

Our observation is that most people who are aware that there is something to be learned can learn C++
well in a reasonable amount of time. The people who fail, and in consequence write appalling C++ and
complain alot, are in our experience mostly people who approach C++ with the attitude that they know all
there is to know about programming so that all they have to do isto pick up ‘*abit of odd syntax.”” Unfor-
tunately, some such people proceed to teach C++ or even write C++ textbooks, and their students then suffer
with them.

8 Conclusions

The C++ programming language has evolved in response to its user community. Managing that evolution
hasn't been easy, but new language features, techniques, and libraries had to be developed to meet the
needs of a growing user community. The coming ISO/ANSI standard should herald a period of stability of
the language definition that ought to set of an explosion of work on tools, techniques, and libraries.

The key problem is education. To use C++ well—or any other language supporting abstraction
mechani sms—people must focus on design issues, and teaching design on alarge scale is not easy.

9 Acknowledgements

Vince Russo made our Christmas preparations more interesting by suggesting that we might be able to
write this paper at the same time. Section 4 was partly inspired by Alex Stepanov’s work on the STL
[Stepanov,1994]. Section 5 was partly inspired by [Gamma,1994]. Brian Kernighan made constructive
comments of an draft of this paper.

10 References

[Booch,1993] Grady Booch: Object-oriented Analysis and Design with Applications, 2nd edition.
Benjamin Cummings, Redwood City, CA. 1993. ISBN 0-8053-5340-2.

[Gamma,1994] Gamma, et.al.: Design Patterns. Addison Wesley. 1994. 1SBN 0-201-63361-2.

[Koenig,1989] Andrew Koenig and Bjarne Stroustrup: As Close as Possible to C—but no Closer
The C++ Report. Vol 1 No 7 July 1989.

[Koenig,1995] Andrew Koenig (editor): The Working Papers for the ANSI-X3J16 /ISO-SC22-
WG21 C++ standards committee.

[Koenig,19954] Andrew Koenig and Barbara Moo: Ruminations on C++. Book, to appear 1996.

[Stroustrup,1985] Bjarne Stroustrup: The C++ Programming Language. Addison Wesley, ISBN 0-
201-12078-X. October 1985.

[Stroustrup,1991] Bjarne Stroustrup: The C++ Programming Language (2nd Edition) Addison Wesley,
ISBN 0-201-53992-6. June 1991.

[Stroustrup,1994] Bjarne Stroustrup: The Design and Evolution of C++ Addison Wesley, ISBN 0-201-
54330-3. March 1994.

[Stepanov,1994] Alexander Stepanov and Meng Lee: The Sandard Template Library. 1SO Program-
ming language C++ project. Doc No: X3J16/94-0095, WG21/N0482. May 1994.

[Vilot,1994] Michael J Vilot: An Introduction to the STL Library. The C++ Report. October

1994.

