Wrapping C++ Member Function Calls

Bjarne Stroustrup

AT&T Labs- Research
Florham Park, New Jersey
USA

ABSTRACT

This paper presents a smple, general, and efficient solution to the old problem of
“‘wrapping’’ calls to an object in pairs of prefix and suffix code. The solution is aso
non-intrusive, appliesto existing classes, allows the use of several prefix/suffix pairs, and
can be implemented in 15 simple lines of Standard C++. A robust version of the wrapper
isalso presented. The claim of efficiency is backed by measurement.

The paper is organized around a series of examples evolving the basic ideainto afinal
robust template class.

1 Introduction

Often, wewant to ‘*wrap’’ apiece of code with some prefix code and some suffix code. For example:

grab- lock do- something release- lock
begin- transaction do- something end- transaction
trace- entry do- something trace- exit

Typically, thereis a prefix/suffix pair that should be applied to many different sections of code. In particu-
lar, in alanguage with classes — such as C++ — the problem often becomes one of ensuring that a prefix()
is called before a call of a member function and suffix() after the call. Thisis easily achieved explicitly
for afew calls. For example:

void fct(X* p)
{

prefix();

p->f();

suffix();

prefix()

p->9();

suffix();
}

However, application programmers must remember to bracket each call in its proper prefix() / suffix()
calls. Thisistediousand error prone.

The obvious alternative isto add the prefix() / suffix() callsto the definitions of the member functions
that need them. For example:

class X{

public:
void f() { prefix(); / * f s own stuff */ suffix(); }
void g() { prefix(); / * g s own stuff */ suffix(); }
/..

Published in the June 2000 issue of "The C++ Report". All rights reserved

void fct(X* p)
{

p->f();
p->9();

This solves the problem for the class user, but is still tedious for the class implementer. Worst of al, this
solution requires foresight by the class implementer. Because the solution is intrusive — the class member
function code must be modified to add, remove, or change a suffix — wrapping can only be done by some-
one able and willing to modify the source code.

One advantage of this approach is that it allows some, but not all functions to be wrapped. This can
sometimes be a significant advantage. Consider the case where the prefix/suffix provides locking. That is,
the class is a form of monitor [Hoare,1974]. In that case, it is not uncommon that a few functions can be
performed without locking because they don’'t modify shared data or access only data that is accessed and
modified atomically [Mitchell,1979].

This paper will concentrate on the case where every operation on aclass needs to be wrapped.

2 History

“Wrapping'’ is an old problem that has been solved many times in various languages and contexts. Moni-
tors provide a solution to the problem of controlling access to a resource in a concurrent system by wrap-
ping callsin a acquire-lock-or-wait and release-lock pair. Many languages provide primitives for wrapping
code in acquire/release lock pairs (for example, Mesa's MONITOR [Mitchell,1979], Java's synchronized
[Lea,1997], and Modula-3's LOCK [Nelson,1991]).

More general solutions are provided by CLOS where a pair of : before and : after methods can wrap
calls to objects of classes derived from the one providing the : before and : after methods [Keene,1989]. |
briefly adopted a variant of that ideafor C++' s direct ancestor C with Classes [Stroustrup,1994]. There, one
could define a function that would implicitly be called before every call of every member function (except
the constructor) and another that would be implicitly called before every return from every member func-
tion (except the destructor). The functions providing this prefix/suffix semantics were called call() and
return() . They were used to provide synchronization for the monitor class in the original task library
[Stroustrup,1980]:

class monitor {
/..
call() {/* grablock*/ }
return() { / * releaselock*/ }
/..

}s

class X: public monitor {
public:

void f();

void g();

/..
i

void fct(X* p)

p->f(); // monitor::call(); f()’s own stuff; monitor::return()
p->g(); // monitor::call(); g()’s own stuff; monitor::return()

Call and return functions were removed from the language because nobody (but me) used them and because
I completely failed to convince people that call() and return() had important uses.
In 1988, Mike Tiemann suggested an aternative solution called ‘ ‘wrappers’ [Tiemann,1988]:

struct foo {
foo();
~foo();

Published in the June 2000 issue of "The C++ Report". All rights reserved

-3-

virtual int () foo(int(foo:: * pmf) (int), int i) // virtual wrapper

prefix();
int r = (this- >* pmf) (i); /1 invoke a function
suffix();
return r;

}

int g(int);

virtual int h(int);

IS

Such awrapper function was syntactically identified by a pair of parentheses in front of the class name and
would wrap calls to functions of its class. The first argument of a wrapper was the member function to
invoke, the second and subsequent arguments were the arguments to that function. The basic idea was that
amember function called by a user was transformed a call of the wrapper with the arguments needed for the
wrapper to do the actual call. For example:

void fct(foo* p)

{
int i=p->g(1); /1 p->()foo(&foo::f,1)
int j=p->h(2); /1 p->()foo(&foo::g,2)
Il ..

}

This proposal died — after some experimental use — because of complexities of handling argument and
return types, and because it was intrusive. That is, you wrapped a class by deriving it from a wrapper base
class and that base class had to be written to deal with all combinations of argument and return types
needed by the derived classes. Thisrequired too much foresight.

This proposal had the interesting property that the wrapper had access to the arguments and the return
value of acall. Also, different wrapper functions could be provided for functions with different types.

3 Prefix

In the following sections, a solution to the wrapping problem is introduced in stages. The solution does not
require language changes; it consists of two simple template classes.
Overloading the - > has long been a popular way of specifying a prefix. For example:
template<class T>
class Prefix {
™ p;
public:
Prefix(T* pp) : p(pp) { }
T* operator- >() { / * prefixcode*/ return p; }
s
X my_object;
Prefix<X> pref_obj(&my_object); /1 available for prefixed use

void fct(Prefix<X> p)

p->f(); /1 prefix code; f()
p->g(); /1 prefix code; g()

Note how the prefix is attached to the object (and its functions) non-intrusively. | can use Prefix to control
access to classes that | cannot change. | can also use Prefix to control access to classes that have not been
specifically been designed for controlled access. In this, the templated Prefix approach is more general and
more flexible than the C with Classes approach and the Tiemann wrapper approach. These approaches
required that controlled classes be derived from a specific base class. The templated Prefix approach
requires less foresight on the part of the programmer.

Published in the June 2000 issue of "The C++ Report". All rights reserved

4 Suffix

Unfortunately, it was not obvious how to extend the templated Prefix approach to deal with suffixes. How-
ever, it can be done. One non-intrusive way of getting something done ‘‘later’’ isto create an object with a
class with a destructor that does that something. The destructor will be executed at the end of the object’s
lifetime. For example:

class Suffix {
public:
~Quffix() { /* suffixcode*/ }

void fct(X* p)

Suffix suf;

p->f();

/..

/1 the suffix code isimplicitly executed here

}

This is a simplified variant of the technique commonly known as ‘‘resource acquisition is initialization’
[Stroustrup,2000]. This technique has the nice property that the suffix code is executed even if f() throws
an exception.

The problems with the *‘resource acquisition isinitialization’’ technique in this context are:

[1] the user must explicitly declare an object

[2] the user must name the Suffix object

[3] the suffix isn’t executed until the end of the block

5 Prefix and Suffix

These problems can be solved by combining the use of a destructor to invoke a suffix with the use of an
operator- > to invoke a prefix. Asbefore, operator- > executes the prefix and returns something that iden-
tifies the abject for which the function isto be called:

template<class T>
class Wrap {
™ p;
public:
Wrap(T* pp) : p(pp) { }
Call_proxy<T> operator- >() { prefix(); return Call_proxy<T>(p); }
s

What is different here is that the value returned by operator- >() is an object holding the pointer to the
object to be called rather that the pointer itself. We can define Call_proxy, with a destructor that calls the
suffix:

template<class T>
class Call_proxy {
™ p;
public:
Call_proxy(T* pp) : p(pp){ }
~Call_proxy() { suffix(); }
T* operator- >() { return p; }
i

We can now write:

#include<iostream>
using namespace std;

void prefix() { cout << " prefix"; }
void suffix() { cout <<" suffix\n"; }

Published in the June 2000 issue of "The C++ Report". All rights reserved

-5-

template<class T> class Call_proxy{ /* ...*/ };
template<class T> class Wrap{ /* ...*/ };

class X{ // oneuser class
public:
X() { cout<<"make an X\n"; }
int f() const{ cout<<"f()"; return 1; }
void g() const{ cout<<"g()"; }
class Y{ // another user class
public:
Y() { cout <<"make a Y\n"; }
void h() const{ cout<<"h()"; }

s

int main() /1 simpletest code

{
Wrap<X> xx(new X);
Wrap<Y> yy(new Y);
if (xx->f()) cout << " done\n";
xx->g();
yy->h();
return O;

}

Each call of xx and yy is bracketed by a pair of prefix()/suffix() calls, so the program produced:

make an X

make a Y

prefix f() suffix

done

prefix g() suffix
prefix h() suffix

Note that wrapping of al calls of al functions is not a simple transformation. For example, you cannot
write afunction or amacro to do so. Even writing a macro to wrap asingle call is nontrivia because of the
need to perform the suffix before returning the result.

It is important that Wrap is implemented completely in Standard C++ [Stroustrup,2000]. No language
extensions or preprocessor magic are required. This implies that variations of the idea can be used to suit
needs and tastes. Also, theideaisimmediately applicable using current C++ implementations.

6 Ownership

The simple Wrap and Call_proxy classes do not implement a general and safe model of ownership. In par-
ticular, they do not define copy constructors and assignment operators that ensure that objects pointed to are
deleted exactly once.

Also, Call_proxy isn't intended as a general class, so we can ensure that Call_proxys are created by
Wrap only and their lifetimes are limited to a single wrapped call:

template<class T> class Wrap;

template<class T>
class Call_proxy {

™ p;

mutable bool own;

Call_proxy(T* pp) : p(pp), own(true) { } /1 restrict creation

Call_proxy(const Call_proxy&a) : p(a. p), own(true) { a. own=false; }

Call_proxy& operator=(const Call_proxy&); /1 prevent assignment
public:

template<class U> friend class Wrap;

Published in the June 2000 issue of "The C++ Report". All rights reserved

~Call_proxy() { if (own) suffix(); }

T* operator- >() const { return p; }

}s

The own variable is needed to ensure that only the last object in a chain of copies executes suffix() . The
way Wrap uses Call_proxy, no copying is needed, and most (all?) compilers are clever enough to avoid
spurious copies. However, to be cautious, | introduced own for the benefit of compilers with poor optimiz-
ing skills.

The wrapper itself isintended for general use. Objects with alifetime controlled by the user are passed
to Wrap as object (by reference). Objectsthat Wrap is supposed to delete are passed as pointers. In thelat-
ter case, the wrapper maintains a use count:

template<class T>
class Wrap {

™ p;

int* owned,;

void incr_owned() const{ if (owned) ++*owned; }

void decr_owned() const{ if (owned && - - *owned == 0) { delete p; delete owned; } }
public:

Wrap(T&Xx) : p(&), owned(0) { }

Wrap(T* pp) : p(pp), owned(new int(1)) { }

Wrap(const Wrap& a) : p(a. p), owned(a. owned) { incr_owned(); }
Wrapé& operator=(const Wrap& a)

{
a. incr_owned();
decr_owned();
p=anp
owned = a. owned;
return * this;

}

“Wrap() { decr_owned(); }
Call_proxy<T> operator- >() const{ prefix(); return Call_proxy<T>(p); }
T* direct() const{ return p; } // extract pointer to wrapped object
s
See [Stroustrup,2000] for a discussion of the non-intrusive use-count scheme used.

7 Parameterization

So far, Wrap has called the global functions suffix() and prefix() . That is not flexible enough or general
enough. We'd like to wrap different objects with different prefix/suffix pairs and to wrap a single object in
more than one pair. Thisissimply handled by making prefix and suffix parameters.

When parameterizing Wrap, the major question is whether to provide per-class parameterization or
per-object parameterization. | chose the latter because it is the most flexible solution.

Call_proxy must have a suffix parameter:

template<class T, class Pref, class Suf> class Wrap;

template<class T, class Suf>
class Call_proxy {

™ p;

mutable bool own;

Suf suffix;

Call_proxy(T pp, Suf su) : p(pp), own(true), suffix(su) { } /1 restrict creation

Call_proxy& operator=(const Call_proxy&); /1 prevent assignment
public:
template<class U, class P, class S> friend class Wrap;

Published in the June 2000 issue of "The C++ Report". All rights reserved

-7-

Call_proxy(const Call_proxy&a) : p(a. p), own(true), suffix(a. suffix) { a. own=false; }
~Call_proxy() { if (own) suffix(); }

T* operator- >() const { return p; }

s
Wrap needs a prefix and a suffix parameter:

template<class T, class Pref, class Suf>
class Wrap {
™ p;
int* owned;
void incr_owned() const { if (owned) ++* owned; }
void decr_owned() const{ if (owned && - - *owned == 0) { delete p; delete owned; } }
Pref prefix;
Suf suffix;
public:
Wrap(T&x, Pref pr, Suf su) : p(&x), owned(0), prefix(pr), suffix(su) { }
Wrap(T* pp, Pref pr, Suf su) : p(pp), owned(new int(1)), prefix(pr), suffix(su) { }

Wrap(const Wrap& a)

:p(a. p), owned(a. owned), prefix(a. prefix), suffix(a. suffix) { incr_owned(); }
Wrapé& operator=(const Wrap& a)
{

a. incr_owned();
decr_owned();
p=ap,

owned = a. owned,;
prefix = a. prefix; ;
suffix = a. suffix;
return * this;

}
“Wrap() { decr_owned(); }
Call_proxy<T, Suf> operator- >() const { prefix(); return Call_proxy<T, Suf>(p, suffix); }

T* direct() const{ return p; } // extract pointer to wrapped object
s

Given that, hereisasimple test program:

#include<iostream>
using namespace std;

void prefix() { cout << " prefix"; }
void suffix() { cout <<" suffix\n”"; }

class X{ // oneuser class
public:
X() { cout<<"make an X\n"; }
“X() { cout << "destroy an X\n"; }
int f() const{ cout<<"f()"; return 1; }
void g() const{ cout<<"g()"; }
class Y{ // another user class
public:
Y() { cout<<"make a Y\n"; }
“Y() { cout << "destroy a Y\n"; }
void h() const{ cout<<"h()"; }
s
struct Pref{ void operator() () const{ cout<<"Pref"; } };
struct Suf { void operator() () const{ cout<<" Suf\n"; } };

Published in the June 2000 issue of "The C++ Report". All rights reserved

int main() /] test program

{
Wrap<X, void(*) (), void(*) () > xx(new X, prefix, suffix);
Wrap<Y, void(*) (), void(*) () > yy(new Y, prefix, suffix);
Wrap<X, void(*) (), void(*) () > x2 = xx;
X X;
Wrap<X, Pref, Suf> x3(x, Pref(), Suf());

if (xx->f()) cout << "done\n";
xx->g();

X2->g();

XX = X2;

X2->g();

x3->g();

yy- >h();

return O;

}

Here, | use function objects primarily to get better inlining and therefore better run-time performance on an
average C++ implementation (see 89). However, function objects have an important advantage over func-
tions in that they can be used to hold data. For example, if we want to wrap calls in a pair of lock/unlock
operations, we often need to say what lock isto be used. This can be done either by having one function for
each lock, or by having function objects that can be initialized with the lock to be used. For example:

struct Lock {
sys _lock Ick;
Lock(sys lock&x) : Ick(x) { }
void operator() () const{ grab(Ick); }

1
struct Unlock {

sys _lock Ick;

Unlock(sys lock& x) : Ick(x) { }

void operator() () const{ release(Ick); }
s

Wrap<X, Lock, Unlock> x3(x, Lock(screen_lock), Unlock(screen_lock));
Wrap<X, Lock, Unlock> x4(y, Lock(lock3a), Unlock(lock3a));

8 Notational Convenience

The flexibility was bought at the expense of notational convenience. | don't think anyone likes to read or
write declarationslike:

Wrap<X, void(*) (), void(*) () > xx(new X, prefix, suffix);

Typically, only afew forms of wrapping are used in a program and people want to refer to those with the
greatest degree of simplicity. The most general notation israrely necessary.

A derived class can be used to provide more concise notation by specialization. Deriving a class also
opens the possibility of defining the most appropriate parameters to constructors:

template<class T>
class Shared: public Wrap<T, Lock, Unlock>

{
public:
Shared(T& obj, sys_lock& Ick) : Wrap<T, Lock, Unlock>(obj, Lock(Ick), Unlock(Ick)) { }
Shared(T* ptr, sys lock& Ick) : Wrap<T, Lock, Unlock>(ptr, Lock(Ick), Unlock(Ick)) { }
b

Shared<X> x3(x, screen_lock);
Shared<X> x4(y, lock3);

Unfortunately, we have to specify both the wrapped type and the wrapped object. Because of the generality
of the constructor mechanism, it is not possible to deduce the one from the other. However, we could

Published in the June 2000 issue of "The C++ Report". All rights reserved

define a function to take advantage of type deduction:

template<class T, class Pref, class Suf>
Wrap<T, Pref, Suf> make wrap(T& x, Pref pr = Pref(), Suf su= Suf())

{
return Wrap<T, Pref, Suf>(x, pr, su);
}
void f(X& X)
{
g(make wrap(x));
/...
}

Unfortunately, we must specify the type of the abject to which we assign the result of make wrap() . In
this example, we must define the argument type for g() . This defeats this technique for simplifying the
Wrap notation except where the target isitself atemplate.

Naturally, if we wanted to wrap only a single type, or if we wanted to make wrapping a particular type
notationally simple, we could introduce a name for that particular wrapper type. For example:

template<class T>
struct Tracer : public Wrap<T, void(*) (), void(*) () > {
Tracer(T& X) : Wrap<T, void(*) (), void(*) () >(x, trace_on, trace off) { }

i
X X;
Tracer<X> xx(x);

typedef Tracer<X> Xtracer;
Xtracer xxx(X);

9 Efficiency

The Wrap class and its auxiliary Call_proxy class have doubled in source code size from the initial version
to the version that is more flexible, general, and safer for a programmer to use. How does this evolution
affect efficiency? To find out | did a simple timing test wrapping calls of an empty, noninlined member
function.

class X{ // oneuser class

public:
void g() const; // note: not even virtual

void X::g() const{/* cout<<"g()";*/}
| measured direct calls of the function

X* p=new X;
"o
p->f();

and calls using the simple Wrap from 85

X X;

Wrap<X> xx(&x); // simple Wrap from 85
/..

xx->f();

and calls using the robust and parameterized Wrap from 87 with pointers to inline functions as prefix and
suffix

inline void pref() { }
inline void suf() { }

Published in the June 2000 issue of "The C++ Report". All rights reserved

-10-

Wrap<X, void(*) (), void(*) () > xx(&x, pref, suf); // robust and parameterized Wrap from §7
/..
xx->f();

and calls using the robust Wrap from 87 using function objects as prefix and suffix to simplify inlining

struct Pref { void operator() () const{ } }; // useto function objectsto simplify inlining
struct Suf{ void operator() () const{ } };

Wrap<X, Pref, Suf> xx(&x, Pref(), Suf()); // robust and parameterized Wrap from §7
Il ..
xx- >f();

Thus, the measurements show the overhead of wrapping compared to the overhead of a call of an empty
function.

Because the simple Wrap doesn’t actually perform any additional computation, we can expect a good
optimizer to eliminate all overhead. However, the robust Wrap does some computation related to owner-
ship, so we should expect to pay alittle—but only alittle—for using it.

The code is available from my home pages: http://www.research.att.com/"bs/papers.html.

To get an idea of the impact of compiler technology and machine architecture, | ran the tests on three differ-
ent machine architectures using atotal of seven different C++ implementations.

As is typica for non-trivial C++ code, the most obvious difference was between runs using different
level of optimization.

O Run times (debug and optimized) O
H Mmimpl.ld impl.l Oimpl.3d impl.3 Oimpl.4d impl.4 H
no Wrap %.14 .06 g 21 .09 5.42 03 O
Csimple Wrap, inline function @.47 .07 -45 10 182 06 O
Crobust Wrap, inline function (.74 25 [].68 23 [J240 14 U
Hrobust Wrap, function object 1,86 11 {59 15 H252 10 H

These numbers are the average of many runs and the results between runs do not show significant variation.
The unit is microseconds per wrapped or unwrapped call.

| did not try to tune the code by selecting compiler and optimizer options. In each case, a default
“*debug mode’’ and a default *‘release mode’’ was used. All runs were done with all Standard C++ facili-
ties enabled.

It may surprise some that the run-time cost of using debug mode can be a factor of 25. Disabling inlin-
ing and all non-trivial operations leave templated code very inefficient. Templates and inlining were
designed with optimization in mind.

Note that for implementations 1 and 3, there is no statistical difference between the cost of a direct call
and the cost of acall through the simple wrapper.

Please not compare the different implementations — they run of completely different hardware and these
simple measurements are not suitable benchmarks.

O Run times (optimized) O
H Mimpl.1 Oimpl.2 impl.3 Oimpl.4 impl.5 impl.6 impI.7g
o Wrap %.06 5.07 .09 g.os 03 .04 04 O
Csimple Wrap, inline function D]J'07 D.07 10 D.06 A5 14 .06 O
Crobust Wrap, inlinefunction .25 .24 23 [.l4 22 28 12 O
H'obust Wrap, function object .11 .17 A5 H.10 A5 22 .09 H

Implementations 2 and 3 ran on the same machine. Similarly, implementations 4, 5, 6, and seven ran on the
same machine. | conclude that the overhead depends more on compiler technology than on machine archi-
tecture.

Note that implementations 1, 2, and 3 provide proof by example that simple wrapping need not incur
overhead. Implementations 1 and 3 show that the cost of robust wrapping can be less than a function call,
though it typically is equivalent to aimost two function calls.

Clearly, implementations are still better at inlining function objects than at optimizing calls through a

Published in the June 2000 issue of "The C++ Report". All rights reserved

-11-

pointer to an inline function.

Two implementations didn't support friend templates, so | had to modify Call_proxy to make more
functions public. However, this does not affect the generated code — beyond allowing code to be generated
from compilersthat isn't yet quite up to the standard in this area.

10 Limitations

A fundamental limitation of this prefix/suffix approach is that neither prefix nor suffix has access to the
arguments to the called function or the result produced. For example, it is not possible to provide a
prefix/suffix to record the results of cals or to map calls into message send operations. In this, the
prefix/suffix approach differs from the Tiemann wrappers [Tiemann,1988].

Another limitation of this approach is that the prefix and suffix are independent. For example, it is not
possible to write a prefix/suffix pair that catch exceptions thrown by the wrapped functions. It is not possi-
ble to open atry-block in the prefix and close it in the suffix.

However, it is possible for a prefix and a suffix to communicate. A simple use of that isfor a prefix and
a suffix to access the same variable as is typically done for locks and trace state. To do the call, Wrap and
Call_proxy get a pointer to the object called. Thus, they might keep a record of objects accessed, but they
do not know which function is called for those objects.

11 Techniques

A wrapper can wrap every class. Consequently, it can wrap awrapper. This can be useful. For example:
Tracer< Shared<X> > xx; // traceaccessesto shared data

Alternatively, several operations can be combined into asingle prefix or suffix. For example:

struct TSpref {
sys lock Ick;
TSpref(sys lock& x) : Ick(x) { }

void operator() () const{ trace on(); grab(lck); }

s
struct TSsuf {

sys_lock Ick;

TSsuf(sys lock& x) : Ick(x) { }

void operator() () const{ release(Ick); trace off(); }
s

template<class T>

class Trace lock: Wrap<T, TSpref, TSsuf> {
Trace lock(T& obj, sys lock& x) : Wrap<T, TSpref, TSsuf>(obj, TSpref(x), TSsuf(x)) { }
Trace lock(T* ptr, sys lock& x) : Wrap<T, TSpref, TSsuf>(ptr, TSpref(x), TSsuf(x)) { }
/..

b
Trace lock xx(x, screen_lock);

This is more work to define, but in general more flexible. To auser, the details of how a wrapper isimple-
mented is of little practical interest.

As mentioned in 81, it is not always a good idea to apply the prefix and suffix to every access to an
object. When we need to access an object directly, we can use the original object. For example:

void code(X* p)

{
Shared<X> xx(*p);
int i =xx>f(2); /1 controlled access
int j =p->f(3); /1 direct access
/..

}

Published in the June 2000 issue of "The C++ Report". All rights reserved

-12 -

However, this approach has the problem that the programmer has to remember what the original object was.
Typically it is simpler and less error-prone to extract a pointer to the wrapped object from the wrapper
using the direct() function supplied for that purpose. For example:

void user(Shared<X>& xx)

{

int i =xx>f(2); /1 controlled access
int j =xx direct() - >f(3); /1 direct access

1.

12 Conclusions

Wrapping calls to member functions of a class by a prefix/suffix pair is simple and efficient and requires no
extensions to Standard C++. Wrapping is non-intrusive and does not place requirements on the wrapped
class. In particular, awrapped class need not be derived from a particular base class. Current C++ imple-
mentations are capable of coping efficiently with the technique. The primary limitation of the prefix/suffix
approach is that the argumentsto acall and itsreturn value is not accessible to the prefix/suffix.

13 Acknowledgements

My measurements were simplified by code borrowed from Andrew Koenig [Koenig,2000].

14 References
[Hoare, 1974]

[Keene,1989]
[Lea,1997]
[Koenig,2000]
[Mitchell,1979]
[Nelson,1991]
[Stroustrup,1980]
[Stroustrup,1995]
[Stroustrup,2000]

[Tiemann,1988]

C. A. R. Hoare: Monitors. An Operating System Structuring Concept. Communica
tions of the ACM 17(10), October 1974.

Sonya A. Keene: Object-Oriented programming in Common Lisp. Addison-Wesley.
1989. ISBN 0-201-17589-4.

Doug Lea: Concurrent Programming in Javall. Addison-Wesley. 1997. ISBN 0-201-
69581-2.

Andrew Koenig and Barbara Moo: Performance: Myths, Measurements, and Morals.
JOOP 13(1,2). January and March 2000.

James G. Mitchell, et.al.: Mesa Language Manual. XEROX PARC, Pao Alto, CA.
CSL-79-3. April 1979.

Greg Nelson (Editor): Systems Programming with Modula-3. Prentice Hall. 1991.
ISBN 0-13-590464-1.

Bjarne Stroustrup: A Set of C Classes for Co-routine Style Programming. Bell Labora-
tories Computer Science Technical Report CSTR-90. November 1980.

Bjarne Stroustrup: The Design and Evolution of C++. Addison-Wesley. 1995. ISBN
0-201-54330-3.

Bjarne Stroustrup: The C++ Programming language (Special Edition). (2nd edition,
1991; 3rd edition, 1997). Addison-Wesley. ISBN 0-201-88954-4 and 0-201-70073-5.
Michael Tiemann: ‘‘Wrappers.’”® Solving the RPC problem in GNU C++. Proc.
USENIX C++ Conference. Denver, CO. October 1988.

Published in the June 2000 issue of "The C++ Report". All rights reserved

